下列函數(shù)中既是偶函數(shù),又在(0,+∞)上是單調(diào)遞增函數(shù)的是(  )
A、y=-x2+1
B、y=|x|+1
C、y=log2x+1
D、y=x3
考點(diǎn):函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性和單調(diào)性的性質(zhì)分別進(jìn)行判斷即可.
解答: 解:A.y=-x2+1是偶函數(shù),在(0,+∞)上單調(diào)遞減,不滿足條件.
B.y=|x|+1是偶函數(shù),在(0,+∞)上單調(diào)遞增,滿足條件.
C.log2x+1的定義域?yàn)椋?,+∞),關(guān)于原點(diǎn)不對稱,為非奇非偶函數(shù),不滿足條件.
D.y=x3是奇函數(shù),在(0,+∞)上單調(diào)遞增,不滿足條件.
故選:B
點(diǎn)評:本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,要求熟練掌握常見函數(shù)的奇偶性和單調(diào)性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B,C的對邊分別為a,b,c,若acosB+bcos(B+C)=0,則△ABC一定是
 
三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為△ABC內(nèi)一點(diǎn),且滿足(
OA
+
OB
)⊥(
OA
-
OB
),(
OB
+
OC
)⊥(
OB
-
OC
),則O為△ABC的( 。
A、外心B、內(nèi)心C、垂心D、重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(tan10°+
3
)•
cos10°
sin70°
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=3,S5=30,則a7+a8+a9=(  )
A、27B、36C、42D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非空數(shù)集 A={x∈R|x2=a},則實(shí)數(shù)a的取值范圍為( 。
A、a=0B、a>0
C、a≠0D、a≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an},a4+a8=π,則a6(a2+2a6+a10)的值為( 。
A、π2B、π
C、4D、-9π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(2,3),
b
=(cosθ,sinθ)且
a
b
,則tanθ=( 。
A、
2
3
B、-
2
3
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線x-y+
2
=0相切.
(1)求橢圓C的方程;
(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn) A,B,設(shè)P為橢圓上一點(diǎn),且滿足
OA
+
OB
=t
OP
( O為坐標(biāo)原點(diǎn)),當(dāng)|
PA
-
PB
|<
2
5
3
時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案