(08年廣東佛山質(zhì)檢文)已知函數(shù)取得極小值.

(Ⅰ)求a,b的值;

(Ⅱ)設(shè)直線. 若直線l與曲線S同時滿足下列兩個條件:

(1)直線l與曲線S相切且至少有兩個切點;

(2)對任意xR都有. 則稱直線l為曲線S的“上夾線”.

試證明:直線是曲線的“上夾線”.

解析:(I)因為,所以                        ---------------1分

,                  -------------------------------2分

解得,                    -------------------------------------------------------------------------3分

此時,

當(dāng),當(dāng),                   -------------------------5分

所以取極小值,所以符合題目條件;                  ----------------6分

(II)由,

當(dāng)時,,此時,,

,所以是直線與曲線的一個切點;                     -----------8分

當(dāng)時,,此時,

,所以是直線與曲線的一個切點;                     -----------10分

所以直線l與曲線S相切且至少有兩個切點;

對任意xR,

所以                       ---------------------------------------------------------------------13分

因此直線是曲線的“上夾線”.     ----------14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年廣東佛山質(zhì)檢理)已知拋物線及點,直線斜率為且不過點,與拋物線交于點兩點.

(Ⅰ)求直線軸上截距的取值范圍;

(Ⅱ)若、分別與拋物線交于另一點,證明:交于定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年廣東佛山質(zhì)檢文)某物流公司購買了一塊長米,寬米的矩形地塊,規(guī)劃建設(shè)占地如圖中矩形的倉庫,其余地方為道路和停車場,要求頂點在地塊對角線上,分別在邊、上,假設(shè)長度為米.

(1)要使倉庫占地的面積不少于144平方米,長度應(yīng)在什么范圍內(nèi)?

(2)若規(guī)劃建設(shè)的倉庫是高度與長度相同的長方體形建筑,問長度為多少時倉庫的庫容最大?(墻體及樓板所占空間忽略不計)

 


 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年廣東佛山質(zhì)檢理)如圖,在組合體中,是一個長方體,是一個四棱錐.,點

(Ⅰ)證明:

(Ⅱ)求與平面所成的角的正切值;

(Ⅲ)若,當(dāng)為何值時,


 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年廣東佛山質(zhì)檢理)拋物線的準線的方程為,該拋物線上的每個點到準線的距離都與到定點N的距離相等,圓N是以N為圓心,同時與直線 相切的圓,

(Ⅰ)求定點N的坐標(biāo);

(Ⅱ)是否存在一條直線同時滿足下列條件:

分別與直線交于A、B兩點,且AB中點為;

被圓N截得的弦長為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年廣東佛山質(zhì)檢理)數(shù)列滿足 .

(Ⅰ)求數(shù)列{}的通項公式;

(Ⅱ)設(shè)數(shù)列{}的前項和為,證明

查看答案和解析>>

同步練習(xí)冊答案