定義
a
*
b
=|
a
||
b
|sinθ,θ是向量
a
b
的夾角,|
a
|,|
b
|是兩向量的模,若點A(-3,2),B(2,3),O為坐標原點,則
OA
*
OB
=( 。
A、-2B、0C、6.5D、13
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:利用數(shù)量積可得向量的夾角,再利用新定義即可得出.
解答: 解:∵A(-3,2),B(2,3),
OA
OB
=-3×2+2×3=0,
∴sinθ=1.
OA
*
OB
=|
OA
| |
OB
sinθ|
=
(-3)2+22
22+32
=13.
故選:D.
點評:本題考查了數(shù)量積、向量的夾角、新定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1的對角線AC1與棱A1B1所在直線所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的第1項a1=1,且an+1=
an
1+an
(n=1,2,3,…),則數(shù)列{an}的第10項a10=(  )
A、1
B、
1
2
C、
1
10
D、
1
11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(x+1)8的展開式中x2的系數(shù)是(  )
A、28
B、56
C、
3
4
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是橢圓
x2
25
+
y2
16
=1上的點,若F1、F2是橢圓的兩個焦點,若|PF1|=4,則|PF2|等于( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直三棱柱ABC-A1B1C1中,若∠BAC=90°,則異面直線BA與AC1所成的角等于( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<a<b,且f(x)=
1
5x
-log5x,則下列大小關系式成立的是(  )
A、f(b)<f(
a+b
2
)<f(
ab
B、f(
a+b
2
)<f(b)<f(
ab
C、f(
ab
)<f(
a+b
2
)<f(a)
D、f(a)<f(
a+b
2
)<f(
ab

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{
a
,
b
,
c
}是空間的一組單位正交基底,而{
a
-
b
,
c
,
a
+
b
}是空間的另一組基底.若向量
p
在基底{
a
,
b
c
}下的坐標為(6,4,2),則向量
p
在基底{
a
-
b
,
c
,
a
+
b
}下的坐標為( 。
A、(1,2,5)
B、(5,2,1)
C、(1,2,3)
D、(3,2,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},a∈P,b∈Q,則有( 。
A、(a+b)∈P
B、(a+b)∈Q
C、(a+b)∈R
D、以上都不對

查看答案和解析>>

同步練習冊答案