【題目】已知數(shù)列{an}滿足a1=1,an+1=2an﹣3(﹣1)n(n∈N*).
(1)若bn=a2n﹣1,求證:bn+1=4bn;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若a1+2a2+3a3+…+nan>λ2n對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)λ的取值范圍.

【答案】
(1)解: =
(2)解:a2=2a1﹣3(﹣1)=5,b1=a2﹣1=4,因?yàn)閎n+1=4bn

所以 ,所以{bn}是等比數(shù)列,所以bn=4n=a2n1, ,

所以 ,即


(3)解:由(2) ,

令S=121+222+…+n2n

則2S=122+223+…+(n﹣1)2n+n2n+1

S=(n﹣1)2n+1+2

n為奇數(shù)時(shí),

n為偶數(shù)時(shí),

所以n為奇數(shù)時(shí)

恒成立,

易證 遞增,n=1時(shí) 取最小值 ,

所以 n為偶數(shù)時(shí),

,

,

易證 遞增,n=2時(shí) 取最小值

所以

綜上可得


【解析】(1)根據(jù)數(shù)列遞推公式即可證明,(2)先求出數(shù)列{bn}的通項(xiàng)公式,再分類求出{an}的通項(xiàng)公式,(3)令S=121+222+…+n2n根據(jù)錯(cuò)位相減法求出Sn , 分離參數(shù),根據(jù)數(shù)列的函數(shù)特征即可求出λ的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的程序框圖,它的輸出結(jié)果是(

A.﹣1
B.0
C.1
D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x|x﹣a|,若對(duì)于任意的x1 , x2∈[﹣2,+∞),x1≠x2 , 不等式 >0恒成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,類比三角形中位線定理“如果EF是三角形的中位線,則EF AB.”,在空間四面體(三棱錐)P﹣ABC中,“如果 , 則”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)= +lnx,其中a為實(shí)常數(shù).
(1)討論f(x)的單調(diào)性;
(2)不等式f(x)≥1在x∈(0,1]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)y=4x3+ax2+bx+5在x= 與x=﹣1時(shí)有極值.
(1)寫出函數(shù)的解析式;
(2)指出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωx+)(A,ω,為常數(shù),且A>0,ω>0,0<<π)的部分圖象如圖所示.

(1)求A,ω,的值;
(2)當(dāng)x∈[0, ]時(shí),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}中,首項(xiàng)為a1(a1≠0),公差為d,前n項(xiàng)和為Sn , 且滿足a1S5+15=0,則實(shí)數(shù)d的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某學(xué)校高三年級(jí)共800名男生中隨機(jī)抽取50人測(cè)量身高.?dāng)?shù)據(jù)表明,被測(cè)學(xué)生身高全部介于155cm到195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[155,160);第二組[160,165);…;第八組[190,195].如圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組比第七組少1人.

(1)估計(jì)這所學(xué)校高三年級(jí)全體男生身高在180cm以上(含180cm)的人數(shù);
(2)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩人,記他們的身高分別為x,y,求滿足“|x﹣y|≤5”的事件的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案