(2007•浦東新區(qū)一模)已知x、y∈R,
y≥|x-1|
y≤-x+2
x≥0
,則目標(biāo)函數(shù)S=2x-y的最大值是
5
2
5
2
分析:作出題中不等式組表示的平面區(qū)域,得如圖的四邊形ABCD及其內(nèi)部,再將目標(biāo)函數(shù)z=2x-y對應(yīng)的直線進(jìn)行平移,可得當(dāng)x=
3
2
且y=
1
2
時,z取得最大值.
解答:解:作出不等式組
y≥|x-1|
y≤-x+2
x≥0
表示的平面區(qū)域,
得到如圖的四邊形ABCD及其內(nèi)部,其中
A(1,0),B(
3
2
,
1
2
),C(0,2),D(0,1)
設(shè)z=F(x,y)=2x-y,將直線l:z=2x-y進(jìn)行平移,
觀察x軸上的截距變化,可得
當(dāng)l經(jīng)過點B時,目標(biāo)函數(shù)z達(dá)到最大值,
∴z最大值=F(
3
2
,
1
2
)=
5
2

故答案為:
5
2
點評:本題給出二元一次不等式組,求目標(biāo)函數(shù)z=2x-y的最大值,著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•浦東新區(qū)二模)據(jù)預(yù)測,某旅游景區(qū)游客人數(shù)在500至1300人之間,游客人數(shù)x(人)與游客的消費總額y(元)之間近似地滿足關(guān)系:y=-x2+2400x-1000000.
(Ⅰ)若該景區(qū)游客消費總額不低于400000元時,求景區(qū)游客人數(shù)的范圍.
(Ⅱ)當(dāng)景區(qū)游客的人數(shù)為多少人時,游客的人均消費最高?并求游客的人均最高消費額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•浦東新區(qū)一模)若α∈{-1,-3,
1
3
,2}
,則使函數(shù)y=xα的定義域為R且在(-∞,0)上單調(diào)遞增的α值為
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•浦東新區(qū)二模)記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
(1)判斷函數(shù)f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)設(shè)函數(shù)f(x)=log2(1-2x),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•浦東新區(qū)二模)x∈R,“x<2”是“|x-1|<1”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•浦東新區(qū)二模)據(jù)有關(guān)資料統(tǒng)計,通過環(huán)境整治,某湖泊污染區(qū)域S(km2)與時間t(年)可近似看作指數(shù)函數(shù)關(guān)系,已知近兩年污染區(qū)域由0.16km2降至0.04km2,則污染區(qū)域降至0.01km2還需
2
2
年.

查看答案和解析>>

同步練習(xí)冊答案