12.已知$\overrightarrow{OA}$=(1,2,3),$\overrightarrow{OB}$=(2,1,2),$\overrightarrow{OC}$=(1,1,2),點(diǎn)M在直線OC上運(yùn)動(dòng),則$\overrightarrow{MA}$•$\overrightarrow{MB}$的最小值為$-\frac{2}{3}$.

分析 利用向量共線定理和數(shù)量積運(yùn)算、二次函數(shù)的單調(diào)性等即可得出.

解答 解:設(shè)M(x,y,z),
∵點(diǎn)M在直線OC上運(yùn)動(dòng),
∴存在實(shí)數(shù)λ,使得$\overrightarrow{OM}=λ\overrightarrow{OC}$,
∴(x,y,z)=λ(1,1,2),得到x=λ,y=λ,z=2λ.
∴$\overrightarrow{MA}•\overrightarrow{MB}$=(1-λ,2-λ,3-2λ)•(2-λ,1-λ,2-2λ)
=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=6λ2-16λ+10=$6(λ-\frac{4}{3})^{2}-\frac{2}{3}$.
當(dāng)且僅當(dāng)$λ=\frac{4}{3}$時(shí),$\overrightarrow{MA}•\overrightarrow{MB}$取得最小值.
此時(shí)M$(\frac{4}{3},\frac{4}{3},\frac{8}{3})$.最小值為$-\frac{2}{3}$,
故答案為:$-\frac{2}{3}$.

點(diǎn)評(píng) 本題主要考查向量數(shù)量積的計(jì)算,熟練掌握向量共線定理和數(shù)量積運(yùn)算、二次函數(shù)的單調(diào)性等是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知數(shù)列{an}滿足a1=a,an+1=$\left\{\begin{array}{l}{\frac{1}{3-{a}_{n}}({a}_{n>1)}}\\{2{a}_{n}({a}_{n}≤1)}\end{array}\right.$,若a3=a1成立,則a在(0,1]內(nèi)的可能值有(  )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列函數(shù)中為奇函數(shù)的是( 。
A.y=2xB.y=x2C.y=$\sqrt{x}$D.y=x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f(x)=lg(2x-4),則方程f(x)=1的解是7,不等式f(x)<0的解集是(2,2.5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在公差為d的等差數(shù)列{an}中有:an=am+(n-m)d (m、n∈N+),類比到公比為q的等比數(shù)列{bn}中有:${b_n}={b_m}•{q^{n-m}}({m,n∈{N^*}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.A={1,2},B={2,3,4}.則A∩B={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知復(fù)數(shù)z滿足|z|=1,則|z-3-4i|的最小值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.雙曲線方程為$\frac{x^2}{|k|-2}$+$\frac{y^2}{5-k}$=1,那么k的取值范圍是(  )
A.k>5B.2<k<5C.-2<k<2D.-2<k<2或k>5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)f(x)=ax-a-x(a>0且a≠1)在R上是增函數(shù),那么g(x)=loga(x+1)的大致圖象是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案