設(shè)代數(shù)方程a-a1x2+a2x4-…+(-1)nanx2n=0有2n個(gè)不同的根±x1,±x2,…,±xn,則,比較兩邊x2的系數(shù)得a1=    ;若已知展開(kāi)式對(duì)x∈R,x≠0成立,則由于有無(wú)窮多個(gè)根:±π,±2π,…,+±nπ,…,于是,利用上述結(jié)論可得=   
【答案】分析:代數(shù)方程a-a1x2+a2x4-…+(-1)nanx2n=0有2n個(gè)不同的根±x1,±x2,…,±xn,∴a-a1x2+a2x4-…+(-1)nanx2n=a,與條件比較兩邊x2的系數(shù)可以推得結(jié)論;由于有對(duì)x∈R且x≠0恒成立,方程 有無(wú)究多個(gè)根:±π,±2π,…±nπ,…,則比較兩邊x2的系數(shù)可以推得結(jié)論.
解答:解:∵代數(shù)方程a-a1x2+a2x4-…+(-1)nanx2n=0有2n個(gè)不同的根±x1,±x2,…,±xn
∴a-a1x2+a2x4-…+(-1)nanx2n=a

比較兩邊x2的系數(shù)可以推得:a1=

比較兩邊x2的系數(shù)可以推得:1+
故答案為a1=;1+
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是類(lèi)比推理,其中由已知根據(jù)方程根的形式,將一個(gè)累加式變成一個(gè)累乘式,用到一次類(lèi)比推理;現(xiàn)時(shí)觀察兩邊x2的系數(shù)得到結(jié)論,又用到一次類(lèi)比,故難較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)代數(shù)方程a0-a1x2+a2x4-…+(-1)nanx2n=0有2n個(gè)不同的根±x1,±x2,…,±xn,則a0-a1x2+a2x4-…+(-1)nanx2n=a0(1-
x2
x
2
1
)(1-
x2
x
2
2
)•…•(1-
x2
x
2
n
)
,比較兩邊x2的系數(shù)得a1=
a0(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
)
a0(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
)
(用a0•x1•x2•…•xn表示);若已知展開(kāi)式
sinx
x
=1-
x2
3!
+
x4
5!
-
x6
7!
+…
對(duì)x∈R,x≠0成立,則由于
sinx
x
=0
有無(wú)窮多個(gè)根:±π,±2π,…,+±nπ,…,于是1-
x2
3!
+
x4
5!
-
x6
7!
+…=(1-
x2
π2
)(1-
x2
22π2
)•…•(1-
x2
n2π2
)•…
,利用上述結(jié)論可得1+
1
22
+
1
32
+…+
1
n2
+…
=
π2
6
π2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省襄陽(yáng)五中、夷陵中學(xué)、鐘祥一中高三(上)11月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)代數(shù)方程a-a1x2+a2x4-…+(-1)nanx2n=0有2n個(gè)不同的根±x1,±x2,…,±xn,則,比較兩邊x2的系數(shù)得a1=    ;若已知展開(kāi)式對(duì)x∈R,x≠0成立,則由于有無(wú)窮多個(gè)根:±π,±2π,…,+±nπ,…,于是,利用上述結(jié)論可得=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省湘西州鳳凰縣華鑫中學(xué)高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)代數(shù)方程a-a1x2+a2x4-…+(-1)nanx2n=0有2n個(gè)不同的根±x1,±x2,…,±xn,則,比較兩邊x2的系數(shù)得a1=    ;若已知展開(kāi)式對(duì)x∈R,x≠0成立,則由于有無(wú)窮多個(gè)根:±π,±2π,…,+±nπ,…,于是,利用上述結(jié)論可得=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年北京市高考數(shù)學(xué)零模試卷(理科)(解析版) 題型:解答題

設(shè)代數(shù)方程a-a1x2+a2x4-…+(-1)nanx2n=0有2n個(gè)不同的根±x1,±x2,…,±xn,則,比較兩邊x2的系數(shù)得a1=    ;若已知展開(kāi)式對(duì)x∈R,x≠0成立,則由于有無(wú)窮多個(gè)根:±π,±2π,…,+±nπ,…,于是,利用上述結(jié)論可得=   

查看答案和解析>>

同步練習(xí)冊(cè)答案