【題目】已知橢圓 的左、右焦點(diǎn)分別為,其離心率,以原點(diǎn)為圓心,橢圓的半焦距為半徑的圓與直線相切.

(1)求的方程;

(2)過(guò)的直線兩點(diǎn), 的中點(diǎn),連接并延長(zhǎng)交于點(diǎn),若四邊形的面積滿(mǎn)足: ,求直線的斜率.

【答案】(1)(2)

【解析】試題分析:

(1) 利用題意列出方程組求解 的值即可求得橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)出直線方程,聯(lián)立直線與橢圓的方程,結(jié)合點(diǎn)到直線的距離公式得到關(guān)于 的方程,解方程即可球的最終結(jié)果,注意直線斜率不存在的情況.

試題解析:

(I)由題意得, 故橢圓的方程為

(II)由于直線的傾斜角不可為零,所以設(shè)直線的方程為,

聯(lián)立可得

設(shè) 可得

設(shè), 又 所以 因?yàn)?/span>上, 故

--------------------①

設(shè)為點(diǎn)到直線的距離, 為點(diǎn)到直線的距離,則

又由點(diǎn)到直線的距離公式得,

所以

由題意知, 所以代入①式

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱(chēng),是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為,其范圍為,分為五個(gè)級(jí)別, 暢通; 基本暢通; 輕度擁堵; 中度擁堵; 嚴(yán)重?fù)矶?早高峰時(shí)段(),從某市交通指揮中心隨機(jī)選取了三環(huán)以?xún)?nèi)的50個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖.

(1)這50個(gè)路段為中度擁堵的有多少個(gè)?

(2)據(jù)此估計(jì),早高峰三環(huán)以?xún)?nèi)的三個(gè)路段至少有一個(gè)是嚴(yán)重?fù)矶碌母怕适嵌嗌伲?/span>

(3)某人上班路上所用時(shí)間若暢通時(shí)為20分鐘,基本暢通為30分鐘,輕度擁堵為36分鐘,中度擁堵為42分鐘,嚴(yán)重?fù)矶聻?0分鐘,求此人所用時(shí)間的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(文科)某出租車(chē)公司響應(yīng)國(guó)家節(jié)能減排的號(hào)召,已陸續(xù)購(gòu)買(mǎi)了140輛純電動(dòng)汽車(chē)作為運(yùn)營(yíng)車(chē)輛,目前我國(guó)主流純電動(dòng)汽車(chē)按續(xù)駛里程數(shù)(單位:公里)分為3類(lèi),即, .對(duì)這140輛車(chē)的行駛總里程進(jìn)行統(tǒng)計(jì),結(jié)果如下表:

(1)從這140輛汽車(chē)中任取1輛,求該車(chē)行駛總里程超過(guò)5萬(wàn)公里的概率; (2)公司為了了解這些車(chē)的工作狀況,決定抽取14輛車(chē)進(jìn)行車(chē)況分析,按表中描述的六種情況進(jìn)行分層抽樣,設(shè)從類(lèi)車(chē)中抽取了輛車(chē). (ⅰ)求的值; (ⅱ)如果從這輛車(chē)中隨機(jī)選取2輛車(chē),求恰有1輛車(chē)行駛總里程超過(guò)5萬(wàn)公里的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)求證:f(x)+f(1﹣x)=
(2)設(shè)數(shù)列{an}滿(mǎn)足an=f(0)+f( )+f( )+…+f( )+f(1),求an;
(3)設(shè)數(shù)列{an}的前項(xiàng)n和為Sn , 若Sn≥λan(n∈N*)恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= sin(2x+ ),其中x∈R,下列結(jié)論中正確的是(
A.f(x)是最小正周期為π的偶函數(shù)
B.f(x)的一條對(duì)稱(chēng)軸是
C.f(x)的最大值為2
D.將函數(shù) 的圖象向左平移 個(gè)單位得到函數(shù)f(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)E、F、G分別是正方體ABCDA1B1C1D1的棱ABBC、B1C1的中點(diǎn),如圖所示,則下列命題中的真命題是________(寫(xiě)出所有真命題的編號(hào)).

以正方體的頂點(diǎn)為頂點(diǎn)的三棱錐的四個(gè)面中最多只有三個(gè)面是直角三角形;

過(guò)點(diǎn)F、D1G的截面是正方形;

點(diǎn)P在直線FG上運(yùn)動(dòng)時(shí),總有APDE;

點(diǎn)Q在直線BC1上運(yùn)動(dòng)時(shí),三棱錐AD1QC的體積是定值;

點(diǎn)M是正方體的平面A1B1C1D1內(nèi)的到點(diǎn)DC1距離相等的點(diǎn),則點(diǎn)M的軌跡是一條線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題共l2分

如圖,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長(zhǎng)A1C1至點(diǎn)P,使C1PA1C1,連接AP交棱CC1D

(Ⅰ)求證:PB1∥平面BDA1

(Ⅱ)求二面角AA1DB的平面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為了解下屬某部門(mén)對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門(mén)的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50],[50,60],…,[80,90],[90,100]

(1)求頻率分布圖中a的值;
(2)估計(jì)該企業(yè)的職工對(duì)該部門(mén)評(píng)分不低于80的概率;
(3)從評(píng)分在[40,60]的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在[40,50]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且b2+c2=a2+bc,求:
(1)2sinBcosC﹣sin(B﹣C)的值;
(2)若a=2,求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案