2.一個幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{4π}{3}$.

分析 由三視圖可知:該幾何體由上下兩部分組成的,下面是一個圓柱,上面是一個圓錐的一半.

解答 解:由三視圖可知:該幾何體由上下兩部分組成的,下面是一個圓柱,上面是一個圓錐的一半.
∴該幾何體的體積V=π×12×1+$\frac{1}{3}×$π×12×2×$\frac{1}{2}$
=$\frac{4π}{3}$.
故答案為:$\frac{4π}{3}$.

點評 本題考查了三視圖的有關(guān)知識、圓柱與圓錐的體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直角梯形ABCD中,AB∥CD,∠A=$\frac{π}{2}$,AD=1,AB=2CD=4,E為AB中點,將△ADE沿直線DE折起到△A1DE,使得A1在平面EBCD上的射影H在直線CD上.
(Ⅰ)求證:平面A1EC⊥平面A1DC;
(Ⅱ)求平面DEA1與平面A1BC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=$\left\{{\begin{array}{l}{x-\frac{1}{x}+1,x≥1}\\{{x^2},x<1}\end{array}}$,則f(f(-1))=1;函數(shù)f(x)在區(qū)間[-2,2]上的值域是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=x2ex
(1)若函數(shù)h(x)=$\frac{f(x)}{{x}^{3}}$-m在(0,+∞)上存在零點,求m的最小值.
(2)若f(x)<ax與f(x)<a2對x∈(-∞,0)恰有一個恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為( 。
A.$\frac{9π}{2}$B.$\frac{27π}{8}$C.36πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若方程x2+mx+n=0(m,n∈R)的解集為{-2,-1},則m=3,n=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x>1}\\{-x-2,x≤1}\end{array}\right.$
(1)比較f(1)與f(2)的大小關(guān)系;
(2)求不等式f(x)>$\frac{1}{2}$的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,1).
(1)求f(x)的解析式;
(2)若對于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}-2,x≤1\\{log_2}(x-1),x>1\end{array}$,則f[f(${\frac{5}{2}})}$]=-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案