(本題滿分12分)

某校從參加高一年級期中考試的學生中隨機抽出名學生,將其數(shù)學成績(均為整數(shù))分成六段,后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ)求分數(shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;

   (Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;

   (Ⅲ)若從名學生中隨機抽取人,抽到的學生成績在分,在分,在分,用表示抽取結(jié)束后的總記分,求的分布列和數(shù)學期望.

(Ⅰ) 見解析(Ⅱ)71(Ⅲ)的分布列為

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

0

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

1

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

2

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

3

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

4

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

……………………11分

期望是2.1


解析:

(Ⅰ)設(shè)分數(shù)在內(nèi)的頻率為,根據(jù)頻率分布直方圖,

則有,

可得,所以頻率分布直方圖如右圖所示.  4分

(求解頻率3分,畫圖1分)

(Ⅱ)平均分為:

.   ……7分

(Ⅲ)學生成績在的有人,在的有人,

的有人.并且的可能取值是.         …………………………8分

; ;

;.

所以的分布列為

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

0

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

1

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

2

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

3

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

4

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

……………………11分

  ……………………12分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年上海市金山區(qū)高三上學期期末考試數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB;

(2) 若,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省高三10月月考理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù)為常數(shù)),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年重慶市高三第二次月考文科數(shù)學 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習冊答案