若直線y=x+b與曲線y=
4-x2
有兩個交點,則實數(shù)b的取值范圍是( 。
A、(2,2
2
B、[2,2
2
C、(-2,2
2
D、(-2
2
,2
2
考點:直線與圓的位置關(guān)系
專題:計算題,直線與圓
分析:曲線y=
4-x2
表示以原點為圓心,2為半徑的圓,在x軸上邊的部分,結(jié)合圖形,即可求出實數(shù)b的取值范圍.
解答: 解:曲線y=
4-x2
表示以原點為圓心,2為半徑的圓,在x軸上邊的部分,
如圖所示,當直線與半圓相切時,b=2
2
,
∴直線y=x+b與曲線y=
4-x2
有兩個交點,實數(shù)b的取值范圍是[2,2
2
).
故選:B.
點評:本題考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線x-ay+2=0(a<0)的傾斜角是( 。
A、arctan
1
a
B、-arctan
1
a
C、π-arctan
1
a
D、π+arctan
1
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=-3”是“圓x2+y2=1與圓(x+a)2+y2=4相切”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
4
+
y2
a2
=1和雙曲線
x2
a2
-
y2
b2
=1有共同的焦點,連接橢圓的焦點和短軸的一個端點所得直線和雙曲線的一條漸近線平行,設(shè)雙曲線的離心率為e,則e2等于( 。
A、
5
+1
2
B、
3
+1
2
C、
3
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>0,b>0,則
a+b
2
ab
,
2ab
a+b
,
a2+b2
2
的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項為a1=5,前n項和為Sn,且Sn+1=2Sn+n+5(n∈N+).
(1)證明:數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)關(guān)于x的函數(shù)f(x)=(a1+1)x+(a2+1)x2+…+(an+1)xn,求函數(shù)f(x)在點x=1處的導(dǎo)致f′(1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標系中,以原點為極點,x軸的正半軸為極軸建坐標系,已知拋物線C:y2=2px(p>0),直線l的參數(shù)方程:
x=-2+
2
2
t
y=-4+
2
2
t
(t為參數(shù)).寫出拋物線C的極坐標方程和直線l的普通方程
 
、
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求不等式|x-2|-|x-1|>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
cx+1(0<x<c)
2-
x
c2
+1(c≤x<1)
滿足f(c2)=
9
8

(1)求常數(shù)c的值;
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案