點(diǎn)P是圓x2+y2=16上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作D垂直于x軸,垂足為D,Q為線(xiàn)段PD的中點(diǎn).
(Ⅰ)求點(diǎn)Q的軌跡方程.
(Ⅱ)已知點(diǎn)M(1,1)為上述所求方程的圖形內(nèi)一點(diǎn),過(guò)點(diǎn)M作弦AB,若點(diǎn)M恰為弦AB的中點(diǎn),求直線(xiàn)AB的方程.

解:(Ⅰ)設(shè)Q(x,y),P(x0,y0),則D(x0,0),
∵Q為線(xiàn)段PD的中點(diǎn),∴,即,
∵P(x0,y0)在圓x2+y2=16上,
∴x02+y02=16,
∴x2+(2y)2=16,即為所求.…(5分)
(Ⅱ)依題意顯然AB的斜率存在,設(shè)直線(xiàn)AB的斜率為k,
則AB的方程可設(shè)為y-1=k(x-1).
,得x2+4(kx+1-k)2=16,
得(1+4k2)x+8k(1-k)x+4(1-k)2-16=0…(8分)
設(shè),
而M(1,1)是AB中點(diǎn),則,
,,解得k=-
∴直線(xiàn)AB的方程為,即x+4y-5=0…(12分)
分析:(Ⅰ)設(shè)Q(x,y),P(x0,y0),則D(x0,0),由Q為線(xiàn)段PD的中點(diǎn),知,由P(x0,y0)在圓x2+y2=16上,知x02+y02=16,由此能求出點(diǎn)Q的軌跡方程.
(Ⅱ)設(shè)直線(xiàn)AB的方程為y-1=k(x-1).由,得(1+4k2)x+8k(1-k)x+4(1-k)2-16=0,設(shè),而M(1,1)是AB中點(diǎn),則,由此能求出直線(xiàn)方程.
點(diǎn)評(píng):本題主要考查直線(xiàn)與圓錐曲線(xiàn)的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線(xiàn)與橢圓的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是圓x2+y2=4上一動(dòng)點(diǎn),定點(diǎn)Q(4,0).
(1)求線(xiàn)段PQ中點(diǎn)的軌跡方程;
(2)設(shè)∠POQ的平分線(xiàn)交PQ于R,求R點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知點(diǎn)P是圓x2+y2=1上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ⊥x軸于點(diǎn)Q,設(shè)
OM
=
OP
+
OQ

(1)求點(diǎn)M的軌跡方程
(2)求向量
OP
OM
夾角的最大值,并求此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是圓x2+y2=1上任意一點(diǎn),過(guò)點(diǎn)P作y軸的垂線(xiàn),垂足為Q,點(diǎn)R滿(mǎn)足
RQ
=
3
PQ
,記點(diǎn)R的軌跡為曲線(xiàn)C.
(Ⅰ)求曲線(xiàn)C的方程;
(Ⅱ)設(shè)A(0,1),點(diǎn)M、N在曲線(xiàn)C上,且直線(xiàn)AM與直線(xiàn)AN的斜率之積為
2
3
,求△AMN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知兩點(diǎn)A(0,-3),B(4,0),若點(diǎn)P是圓x2+y2-2y=0上的動(dòng)點(diǎn),則△ABP面積的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)F(
3
,0
),長(zhǎng)軸長(zhǎng)為4.
(1)求橢圓C的方程,
(2)點(diǎn)P是圓x2+y2=b2上第一象限內(nèi)的任意一點(diǎn),過(guò)P作圓的切線(xiàn)與橢圓C交于Q(x1,y1),R(x2,y2)(y1>y2)兩點(diǎn).①求證:|PQ|+|FQ|=2.②求|QR|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案