(13分)已知F1、F2是橢圓c1(a>b>0)的左、右焦點(diǎn),A為右頂點(diǎn),P為橢圓c1上任意一點(diǎn),且最大值的取值范圍是[c2,3c2],c2=a2-b2.(1)求橢圓c1離心率e的取值范圍;(2)設(shè)雙曲線c2以橢圓c1焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn),B是雙曲線c2在第一象限上任意一點(diǎn),當(dāng)橢圓c1離心率e取得最小值時(shí),問是否存在正常數(shù)λ使∠BAF1=λ∠BF1A恒成立?若存在,求出λ值;若不存在,請(qǐng)說明理由.

(1)(2)λ=2


解析:

(1)設(shè)P(x,y),則,.∴,將代入得,0≤x2≤a2,當(dāng)x2=a2時(shí)得,又c2≤b2≤3c2,即c2≤a2-c2≤3c2,∴.∴.

(2)當(dāng)時(shí),a=2c,b=,∴,A(2c,0).設(shè)B(x0,y0),(x0,y0>0),則,當(dāng)AB⊥x軸時(shí),則,∴,故.由此猜想λ=2可使總成立,證明如下:

  當(dāng)x0≠2c時(shí),,,∴,

代入得.

又∵2∠BF1A與∠BAF1同在區(qū)間(0,)∪()內(nèi),∴2∠BF1A=∠BAF1.

故存在λ=2,使恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn),若在橢圓上存在一點(diǎn)P,使∠F1PF2=120°,則橢圓離心率的范圍是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P使得∠F1PF2=120°,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓的兩個(gè)焦點(diǎn).△F1AB為等邊三角形,A,B是橢圓上兩點(diǎn)且AB過F2,則橢圓離心率是
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn),橢圓上存在一點(diǎn)P,使得SF1PF2=
3
b2
,則該橢圓的離心率的取值范圍是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
2
+y2=1
的兩個(gè)焦點(diǎn),點(diǎn)P是橢圓上一個(gè)動(dòng)點(diǎn),那么|
PF1
+
PF2
|
的最小值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案