【題目】中國古代十進制的算籌計數(shù)法,在世界數(shù)學(xué)史上是一個偉大的創(chuàng)造. 算籌實際上是一根根同樣長短的小木棍,用算籌表示數(shù)1~9的方法如圖:例如:163可表示為“”,27可表示為“”.現(xiàn)有6根算籌,用來表示不能被10整除的兩位數(shù),算籌必須用完,則這樣的兩位數(shù)的個數(shù)為_________.
【答案】16
【解析】
根據(jù)算籌計數(shù)法,需要對不能被10整除的兩位數(shù)進行分類討論。可采用列舉法寫出具體個數(shù)
根據(jù)算籌計數(shù)法中的技術(shù)特點,可分為:
“1”作十位數(shù):另外五根算籌有兩種組合方式,分別為15、19
“2”作十位數(shù):另外四根算籌有兩種組合方式,分別為24、28
“3”作十位數(shù):另外三根算籌有兩種組合方式,分別為33、37
“4”作十位數(shù):另外兩根算籌有兩種組合方式,分別為42、46
“5”作十位數(shù):另外一根算籌有兩種組合方式,分別為51
“6”作十位數(shù):另外四根算籌有兩種組合方式,分別為64、68
“7”作十位數(shù):另外三根算籌有兩種組合方式,分別為73、77
“8”作十位數(shù):另外兩根算籌有兩種組合方式,分別為82、86
“9”作十位數(shù):另外一根算籌有兩種組合方式,分別為91
所以這樣的兩位數(shù)的個數(shù)共有16個
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列對任意滿足,下面給出關(guān)于數(shù)列的四個命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個數(shù)為( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,.
(1)若,,且對任意的,都有,求實數(shù)的取值范圍;
(2)若,,且在單調(diào)遞增,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,為坐標(biāo)原點,動點在圓外,過點作圓的切線,設(shè)切點為.
(1)若點運動到處,求此時切線的方程;
(2)求滿足的點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則以下關(guān)于函數(shù)的判斷:
①在區(qū)間內(nèi)單調(diào)遞增;
②在區(qū)間內(nèi)單調(diào)遞減;
③在區(qū)間內(nèi)單調(diào)遞增;
④是極小值點;
⑤是極大值點.
其中正確的是( )
A. ③⑤B. ②③C. ①④⑤D. ①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上任意一點到兩焦點距離之和為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線的斜率為,直線與橢圓C交于兩點.點為橢圓上一點,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知拋物線,過點的直線與拋物線交于、兩點,且直線與軸交于點.(1)求證:,,成等比數(shù)列;
(2)設(shè),,試問是否為定值,若是,求出此定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com