【題目】在平面直角坐標(biāo)系中,已知圓心在直線上的圓經(jīng)過點,但不經(jīng)過坐標(biāo)原點,并且直線與圓相交所得的弦長為4.

(1)求圓的一般方程;

(2)若從點發(fā)出的光線經(jīng)過軸反射,反射光線剛好通過圓的圓心,求反射光線所在的直線方程(用一般式表達(dá)).

【答案】(1);(2)反射光線所在的直線方程的一般式為: .

【解析】試題分析:(1)設(shè)圓,根據(jù)圓心在直線上,圓經(jīng)過點,并且直線與圓相交所得的弦長為,列出關(guān)于的方程組,解出的值,可得圓的標(biāo)準(zhǔn)方程,再化為一般方程即可;(2)點關(guān)于軸的對稱點,反射光線所在的直線即為,又因為

利用兩點式可得反射光線所在的直線方程,再化為一般式即可.

試題解析:(1)設(shè)圓

因為圓心在直線上,所以有:

又因為圓經(jīng)過點,所以有: ,

而圓心到直線的距離為 ,

由弦長為4,我們有弦心距.

所以有

聯(lián)立成方程組解得: ,

又因為通過了坐標(biāo)原點,所以舍去.

所以所求圓的方程為: ,

化為一般方程為: .

(2)點關(guān)于軸的對稱點,

反射光線所在的直線即為,又因為,

所以反射光線所在的直線方程為: ,

所以反射光線所在的直線方程的一般式為: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓x2+y2=2的切線l與軸的正半軸、軸的正半軸分別交于點A、B,當(dāng)|AB|取最小值時,切線l的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在原點,一個焦點F(﹣2,0),且長軸長與短軸長的比是
(1)求橢圓C的方程;
(2)設(shè)點M(m,0)在橢圓C的長軸上,點P是橢圓上任意一點.當(dāng) 最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義在(﹣∞,+∞)上的奇函數(shù).

(1)求a的值;

(2)當(dāng)x∈(0,1]時,tf(x)≥2x﹣2恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對正整數(shù)n,記In={1,2,3,...,n},Pn={|m∈In,k∈In}.

(1)求集合P7中元素的個數(shù);

(2)若Pn的子集A中任意兩個元素之和不是整數(shù)的平方,則稱A為“稀疏集”.求n的最大值,使Pn能分成兩個不相交的稀疏集的并集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著我市經(jīng)濟的快速發(fā)展,政府對民生也越來越關(guān)注. 市區(qū)現(xiàn)有一塊近似正三角形土地ABC(如圖所示),其邊長為2百米,為了滿足市民的休閑需求,市政府?dāng)M在三個頂點處分別修建扇形廣場,即扇形DBE,DAGECF其中、分別相切于點DE,且無重疊,剩余部分(陰影部分)種植草坪. 設(shè)BD長為x(單位:百米,草坪面積為S(單位:百米2).

(1)試用x分別表示扇形DAGDBE的面積,并寫出x的取值范圍;

(2)當(dāng)x為何值時,草坪面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中的值,并估計該企業(yè)的職工對該部門評分不低于80的概率;

(2)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E是A1B1上一點,若平面EBD與平面ABCD所成銳二面角的正切值為 ,設(shè)三棱錐A﹣A1D1E外接球的直徑為a,則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的程序框圖中,若輸出i的值是3,則輸入x的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案