已知橢圓C:=1(ab>0)的左.右焦點(diǎn)為F1、F2,離心率為e. 直線(xiàn)ly=exax軸.y軸分別交于點(diǎn)A、B,M是直線(xiàn)l與橢圓C的一個(gè)公共點(diǎn),P是點(diǎn)F1關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn),設(shè)=λ.

   (Ⅰ)證明:λ=1-e2;

   (Ⅱ)確定λ的值,使得△PF1F2是等腰三角形.

(Ⅰ)因?yàn)锳、B分別是直線(xiàn)lx軸、y軸的交點(diǎn),所以A、B的坐標(biāo)分別是設(shè)M的坐標(biāo)是

所以      因?yàn)辄c(diǎn)M在橢圓上,所以 

   解得

   (Ⅱ)解:因?yàn)?i>PF1l,所以∠PF1F2=90°+∠BAF1為鈍角,要使△PF1F2為等腰三角形,必有|PF1|=|F1F2|.設(shè)點(diǎn)P的坐標(biāo)是,

由|PF1|=|F1F2|得

兩邊同時(shí)除以4a2,化簡(jiǎn)得  從而

于是.    即當(dāng)時(shí),△PF1F2為等腰三角形.


解析:

點(diǎn)撥與提示:(1)由A、B的坐標(biāo)求出M點(diǎn)的坐標(biāo)(x0,y0),代入橢圓的方程即可;(2)利用等腰三角形的性質(zhì)|PF1|=|F1F2|來(lái)求λ的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年泉州一中適應(yīng)性練習(xí)文)(12分)已知橢圓C=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F且斜率為1的直線(xiàn)交橢圓CA,B兩點(diǎn),N為弦AB的中點(diǎn)。

(1)求直線(xiàn)ONO為坐標(biāo)原點(diǎn))的斜率KON ;

(2)對(duì)于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年湖北重點(diǎn)中學(xué)4月月考理)(13分

已知橢圓C=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F且斜率為1的直線(xiàn)交橢圓CA,B兩點(diǎn),N為弦AB

(1)求直線(xiàn)ONO為坐標(biāo)原點(diǎn))的斜率KON

1)           (2)對(duì)于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F且斜率為1的直線(xiàn)交橢圓CAB兩點(diǎn),N為弦AB的中點(diǎn)。

(1)求直線(xiàn)ONO為坐標(biāo)原點(diǎn))的斜率KON ;

(2)對(duì)于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F且斜率為1的直線(xiàn)交橢圓CA,B兩點(diǎn),N為弦AB的中點(diǎn)。

(1)求直線(xiàn)ONO為坐標(biāo)原點(diǎn))的斜率KON ;

(2)對(duì)于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北省武漢市高三9月調(diào)研測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F的直線(xiàn)l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案