已知數(shù)列{an}的首項為a1=3,點(an,an+1)在直線3x-y=0(n∈N*)上.
(1)求數(shù)列{an}的通項公式;
(2)若f(x)=a1x+a2x2+…+anxn,求f'(1)的值,并化簡.
【答案】
分析:(1)通過點在直線上,求出a
n與a
n+1的關(guān)系,判斷數(shù)列是等比數(shù)列,然后求數(shù)列{a
n}的通項公式;
(2)若f(x)=a
1x+a
2x
2+…+a
nx
n,求出函數(shù)的導(dǎo)數(shù),然后直接求出f′(1)的值,利用錯位相減法求出值即可.
解答:解:(1)由已知有3a
n-a
n+1=0
,所以數(shù)列{a
n}為等比數(shù)列,…(4分)
a
n=a
1•3
n-1=3
n(n∈N
*),…(6分)
(2)f(x)=a
1x+a
2x
2+…+a
nx
n,
則f′(x)=a
1+2a
2x+3a
3x
2+…+na
nx
n-1,
則f′(1)=a
1+2a
2+3a
3+…+na
n=3+2•3
2+3•3
3+…+n•3
n…①
3f′(1)=3•3+2•3
2•3+3•3
3•3+…+n•3
n•3
即3f′(1)=3
2+2•3
3+3•3
4+…+(n-1)•3
n+n•3
n+1…②…(8分)
①-②得-2f′(1)=3+3
2+3
3+…+3
n-n•3
n+1…(14分)
點評:本題是中檔題,考查數(shù)列與函數(shù)的關(guān)系,通項公式的求法,錯位相減法的應(yīng)用,考查計算能力.