在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù),0 ≤ α < π).以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程為ρcos2θ = 4sinθ.
(1)求直線l與曲線C的平面直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于不同的兩點(diǎn)A、B,若,求α的值.

(1),
(2)

解析試題分析:解:(Ⅰ)直線普通方程為 
曲線的極坐標(biāo)方程為,則 
      6分
(Ⅱ),將代入曲線 
 
 
 
      12分
考點(diǎn):參數(shù)方程與極坐標(biāo)
點(diǎn)評(píng):主要是考查了參數(shù)方程的運(yùn)用,以及直線與圓的位置關(guān)系的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,是過定點(diǎn)且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長(zhǎng)度)中,曲線的極坐標(biāo)方程為.
(I)寫出直線的參數(shù)方程;并將曲線的方程化為直角坐標(biāo)方程;
(II)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線的極坐標(biāo)方程為
(Ⅰ)求的直角坐標(biāo)方程;
(Ⅱ)直線為參數(shù))與曲線C交于兩點(diǎn),與軸交于,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為
(1)將圓的參數(shù)方程化為普通方程,將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)圓,是否相交?若相交,請(qǐng)求出公共弦長(zhǎng),若不相交,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)直線與曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(I)將圓的參數(shù)方程化為普通方程,將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(II)圓、是否相交,若相交,請(qǐng)求出公共弦的長(zhǎng);若不相交,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C的參數(shù)方程為為參數(shù)),P是圓Cx軸的正半軸的交點(diǎn).
(1)求過點(diǎn)P的圓C的切線極坐標(biāo)方程和圓C的極坐標(biāo)方程;
(2)在圓C上求一點(diǎn)Qa, b),它到直線x+y+3=0的距離最長(zhǎng),并求出最長(zhǎng)距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

下列說法中不正確的是(   )

A.對(duì)于線性回歸方程,直線必經(jīng)過點(diǎn)
B.莖葉圖的優(yōu)點(diǎn)在于它可以保存原始數(shù)據(jù),并且可以隨時(shí)記錄
C.將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一常數(shù)后,方差恒不變
D.?dāng)S一枚均勻硬幣出現(xiàn)正面向上的概率是,那么一枚硬幣投擲2次一定出現(xiàn)正面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知極坐標(biāo)方程為ρcosθ+ρsinθ-1=0的直線與x軸的交點(diǎn)為P,與橢圓(θ為參數(shù))交于點(diǎn)A、B,求PA·PB的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案