9.在空間直角坐標系O-xyz中,一個四面體的頂點坐標分別是(1,0,2),(1,2,0),(1,2,1),(0,2,2),若正視圖以yOz平面為投射面,則該四面體左(側)視圖面積為( 。
A.$\frac{1}{2}$B.1C.2D.4

分析 若正視圖以yOz平面為投射面,則該四面體左(側)視圖為三角形,底高分別為1,2,即可得出結論.

解答 解:若正視圖以yOz平面為投射面,則該四面體左(側)視圖為三角形,底高分別為1,2,面積為1,
故選C.

點評 本題考查三視圖,考查學生的計算能力,確定該四面體左(側)視圖為三角形,底高分別為1,2是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.二項式(x3-$\frac{2}{x}$)6的展開式中含x-2項的系數(shù)是-192.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≤0}\\{2x+y-a≥0}\\{y-2≤0}\end{array}\right.$,若目標函數(shù)z=x-2y的最大值是-2,則實數(shù)a=(  )
A.-6B.-1C.1D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=-2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程是ρ=4sinθ.
(Ⅰ)求曲線C1與C2交點的平面直角坐標;
(Ⅱ)A,B兩點分別在曲線C1與C2上,當|AB|最大時,求△OAB的面積(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知2sinα•tanα=3,且0<α<π.
(1)求α的值;
(2)求函數(shù)f(x)=4sinxsin(x-α)在$[0,\frac{π}{4}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.等差數(shù)列{an}的前n項和為Sn,且滿足a4+a10=20,則S13=130.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的上、下頂點分別為A1、A2,點P在C上且直線PA2斜率的取值范圍是[-2,-1],那么直線PA1斜率的取值范圍是[$\frac{3}{8},\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.隨著我國經(jīng)濟的發(fā)展,居民的儲蓄存款逐年增長.設某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:
年份20112012201320142015
時間代號t12345
儲蓄存款y(千億元)567810
(1)求y關于t的回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$
(2)用所求回歸方程預測該地區(qū)2016年(t=6)的人民幣儲蓄存款.
附:回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$中,
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={x|x2<4},B={x∈Z|-3≤x<1},則A∩B=( 。
A.{-2,-1,0}B.(-1,0)C.{-1,0}D.(-3,-2)

查看答案和解析>>

同步練習冊答案