設(shè)甲、乙、丙三人每次射擊命中目標(biāo)的概率分別為0.7、0.6和0.5.三人各向目標(biāo)射擊一次,求至少有一人命中目標(biāo)的概率及恰有兩人命中目標(biāo)的概率.

0.94   0.44

解析解:設(shè)Ak表示“第k人命中目標(biāo)”,k=1,2,3.
這里,A1,A2,A3獨(dú)立,且P(A1)=0.7,P(A2)=0.6,P(A3)=0.5.
從而,至少有一人命中目標(biāo)的概率為1-P(1·2·3)=1-P(1)P(2)P(3)=1-0.3×0.4×0.5=0.94.
恰有兩人命中目標(biāo)的概率為
P(A1·A2·3+A1·2·A31·A2·A3)
=P(A1·A2·3)+P(A1·2·A3)+P(1·A2·A3)
=P(A1)P(A2)P(3)+P(A1)P(2)P(A3)+
P(1)P(A2)P(A3)=0.7×0.6×0.5+0.7×0.4×0.5+0.3×0.6×0.5=0.44.
∴至少有一人命中目標(biāo)的概率為0.94,恰有兩人命中目標(biāo)的概率為0.44.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

有驅(qū)蟲(chóng)藥1618和1573各3杯,從中隨機(jī)取出3杯稱(chēng)為一次試驗(yàn)(假定每杯被取到的概率相等),將1618全部取出稱(chēng)為試驗(yàn)成功.
(1)求恰好在第3次試驗(yàn)成功的概率(要求將結(jié)果化為最簡(jiǎn)分?jǐn)?shù)).
(2)若試驗(yàn)成功的期望值是2,需要進(jìn)行多少次相互獨(dú)立重復(fù)試驗(yàn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩藥廠生產(chǎn)同一型號(hào)藥品,在某次質(zhì)量檢測(cè)中,兩廠各有5份樣品送檢,檢測(cè)的平均得分相等(檢測(cè)滿分為100分,得分高低反映該樣品綜合質(zhì)量的高低).成績(jī)統(tǒng)計(jì)用莖葉圖表示如下:


 

9 8
8
4  8 9
2 1 0
9
  6
 
(1)求;
(2)某醫(yī)院計(jì)劃采購(gòu)一批該型號(hào)藥品,從質(zhì)量的穩(wěn)定性角度考慮,你認(rèn)為采購(gòu)哪個(gè)藥廠的產(chǎn)品
比較合適?
(3)檢測(cè)單位從甲廠送檢的樣品中任取兩份作進(jìn)一步分析,在抽取的兩份樣品中,求至少有一份得分在(90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

據(jù)IEC(國(guó)際電工委員會(huì))調(diào)查顯示,小型風(fēng)力發(fā)電項(xiàng)目投資較少,且開(kāi)發(fā)前景廣闊,但受風(fēng)力自然資源影響,項(xiàng)目投資存在一定風(fēng)險(xiǎn).根據(jù)測(cè)算,風(fēng)能風(fēng)區(qū)分類(lèi)標(biāo)準(zhǔn)如下:

假設(shè)投資A項(xiàng)目的資金為≥0)萬(wàn)元,投資B項(xiàng)目資金為≥0)萬(wàn)元,調(diào)研結(jié)果是:未來(lái)一年內(nèi),位于一類(lèi)風(fēng)區(qū)的A項(xiàng)目獲利的可能性為,虧損的可能性為;位于二類(lèi)風(fēng)區(qū)的B項(xiàng)目獲利的可能性為,虧損的可能性是,不賠不賺的可能性是.
(1)記投資A,B項(xiàng)目的利潤(rùn)分別為,試寫(xiě)出隨機(jī)變量的分布列和期望;
(2)某公司計(jì)劃用不超過(guò)萬(wàn)元的資金投資于A,B項(xiàng)目,且公司要求對(duì)A項(xiàng)目的投
資不得低于B項(xiàng)目,根據(jù)(1)的條件和市場(chǎng)調(diào)研,試估計(jì)一年后兩個(gè)項(xiàng)目的平均利
潤(rùn)之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)一批共50件的某電器進(jìn)行分類(lèi)檢測(cè),其重量(克)統(tǒng)計(jì)如下:

重量段
[80,85)
[85,90)
[90,95)
[95,100]
件數(shù)
5
a
15
b
規(guī)定重量在82克及以下的為“A”型,重量在85克及以上的為“B”型,已知該批電器有“A”型2件
(1)從該批電器中任選1件,求其為“B”型的概率;
(2)從重量在[80,85)的5件電器中,任選2件,求其中恰有1件為“A”型的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

觀察下面一組組合數(shù)等式:
;
;
;
…………
(1)由以上規(guī)律,請(qǐng)寫(xiě)出第個(gè)等式并證明;
(2)隨機(jī)變量,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

從某批產(chǎn)品中,有放回地抽取產(chǎn)品二次,每次隨機(jī)抽取1件,假設(shè)事件A“取出的2件產(chǎn)品都是二等品”的概率P(A)=0.04
(1)求從該批產(chǎn)品中任取1件是二等品的概率;
(2)若該批產(chǎn)品共10件,從中任意抽取2件;X表示取出的2件產(chǎn)品中二等品的件數(shù),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)袋中裝有若干個(gè)大小相同的黑球、白球和紅球,已知從袋中任意摸出1個(gè)球,得到黑球的概率是;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是.
(1)若袋中共有10個(gè)球,
①求白球的個(gè)數(shù);
②從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為X,求隨機(jī)變量X的分布列.
(2)求證:從袋中任意摸出2個(gè)球,至少得到1個(gè)黑球的概率不大于,并指出袋中哪種顏色的球的個(gè)數(shù)最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在添加劑的搭配使用中,為了找到最佳的搭配方案,需要對(duì)各種不同的搭配方式作比較.在試制某種洗滌劑時(shí),需要選用兩種不同的添加劑.現(xiàn)有芳香度分別為1,2,3,4,5,6的六種添加劑可供選用.根據(jù)試驗(yàn)設(shè)計(jì)原理,通常首先要隨機(jī)選取兩種不同的添加劑進(jìn)行搭配試驗(yàn).用X表示所選用的兩種不同的添加劑的芳香度之和.求所選用的兩種不同的添加劑的芳香度之和等于6的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案