如圖,橢圓經(jīng)過點,其左、右頂點分別是、,左、右焦點分別是、,(異于、)是橢圓上的動點,連接交直線于、兩點,若成等比數(shù)列.
(Ⅰ)求此橢圓的離心率;
(Ⅱ)求證:以線段為直徑的圓過點.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關(guān)系,直線l:x-y+=0與以原點為圓心, 以橢圓C的短半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1,k2,且k1+k2=4,證明:直線AB過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知點,點在直線:上運動,過點與垂直的直線和線段的垂直平分線相交于點.
(1)求動點的軌跡的方程;
(2)過(1)中的軌跡上的定點作兩條直線分別與軌跡相交于,兩點.試探究:當(dāng)直線,的斜率存在且傾斜角互補(bǔ)時,直線的斜率是否為定值?若是,求出這個定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓上的點到左右兩焦點的距離之和為,離心率為.
(1)求橢圓的方程;
(2)過右焦點的直線交橢圓于兩點,若軸上一點滿足,求直線的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的兩個焦點是(0,-)和(0,),并且經(jīng)過點,拋物線E的頂點在坐標(biāo)原點,焦點F恰好是橢圓C的右頂點.
(Ⅰ)求橢圓C和拋物線E的標(biāo)準(zhǔn)方程;
(Ⅱ)過點F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點A、B,l2交拋物線E于點G、H,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,曲線、相交于、兩點.()
(Ⅰ)求、兩點的極坐標(biāo);
(Ⅱ)曲線與直線(為參數(shù))分別相交于兩點,求線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知的兩頂點坐標(biāo),,圓是的內(nèi)切圓,在邊,,上的切點分別為,(從圓外一點到圓的兩條切線段長相等),動點的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)直線與曲線的另一交點為,當(dāng)點在以線段為直徑的圓上時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com