【題目】同時具有性質(zhì):“①最小正周期是π;②圖象關(guān)于直線 對稱;③在 上是增函數(shù).”的一個函數(shù)為( )
A.
B. ??
C.
D.
【答案】D
【解析】解:由于y=sin( + )的最小正周期為 =4π,不滿足①,故排除A. 由于y=cos( ﹣ )的最小正周期為 =4π,不滿足①,故排除B.
由于y=cos(2x+ ),在 上,2x+ ∈[﹣ , ],
故y=cos(2x+ )在 上沒有單調(diào)性,故排除C.
對于y=sin(2x﹣ )的最小正周期為 =π;
當 時,函數(shù)取得最大值為1,故圖象關(guān)于直線 對稱;
在 上,2x﹣ ∈[﹣ , ],故y=sin(2x﹣ )在 上是增函數(shù),
故D滿足題中的三個條件,
故選:D.
【考點精析】根據(jù)題目的已知條件,利用正弦函數(shù)的單調(diào)性和正弦函數(shù)的對稱性的相關(guān)知識可以得到問題的答案,需要掌握正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù);正弦函數(shù)的對稱性:對稱中心;對稱軸.
科目:高中數(shù)學 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位: ).根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記表示一天內(nèi)抽取的16個零件中其尺寸在之外的零件數(shù),求及的數(shù)學期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.
(。┰囌f明上述監(jiān)控生產(chǎn)過程方法的合理性;
(ⅱ)下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計算得,其中為
抽取的第個零件的尺寸, .
用樣本平均數(shù)作為的估計值,用樣本標準差作為的估計值,利用估計值判斷是否需對當天的生產(chǎn)過程進行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計和(精確到0.01).
附:若隨機變量服從正態(tài)分布,則, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,D是BC的中點.
(1)求證:A1B∥平面ADC1;
(2)若AB⊥AC,AB=AC=1,AA1=2,求幾何體ABD-A1B1C1的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的左焦點為,左準線方程為.
(1)求橢圓的標準方程;
(2)已知直線交橢圓于, 兩點.
①若直線經(jīng)過橢圓的左焦點,交軸于點,且滿足, .求證: 為定值;
②若(為原點),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若方程 所表示的曲線為C,給出下列四個命題:
①若C為橢圓,則;
②若C為雙曲線,則或;
③曲線C不可能是圓;
④若,曲線C為橢圓,且焦點坐標為;
⑤若,曲線C為雙曲線,且虛半軸長為.
其中真命題的序號為____________.(把所有正確命題的序號都填在橫線上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一輛賽車在一個周長為的封閉跑道上行駛,跑道由幾段直道和彎道組成,圖反映了賽車在“計時賽”整個第二圈的行駛速度與行駛路程之間的關(guān)系.
圖1
圖2
根據(jù)圖有以下四個說法:
①在這第二圈的到之間,賽車速度逐漸增加;
②在整個跑道中,最長的直線路程不超過;
③大約在這第二圈的到之間,賽車開始了那段最長直線路程的行駛;
④在圖的四條曲線(注:為初始記錄數(shù)據(jù)位置)中,曲線最能符合賽車的運動軌跡.
其中,所有正確說法的序號是( )
A. ①②③ B. ②③ C. ①④ D. ③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-5:不等式選講]已知函數(shù)f(x)=|2x﹣a|+a.
(1)當a=2時,求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x﹣1|,當x∈R時,f(x)+g(x)≥3,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com