精英家教網 > 高中數學 > 題目詳情
14.若復數z滿足|z-2i|=1(i為虛數單位),則|z|的最小值為1.

分析 設z=x+yi,(x,y∈R),根據|z-2i|=1,可得x2=1-(y-2)2(y∈[1,3]).代入|z|=$\sqrt{{x}^{2}+{y}^{2}}$,即可得出.

解答 解:設z=x+yi,(x,y∈R),
∵|z-2i|=1,
∴|x+(y-2)i|=1,
∴$\sqrt{{x}^{2}+(y-2)^{2}}$=1,∴x2=1-(y-2)2(y∈[1,3]).
則|z|=$\sqrt{{x}^{2}+{y}^{2}}$=$\sqrt{1-(y-2)^{2}+{y}^{2}}$=$\sqrt{4y-3}$≥$\sqrt{4-3}$=1.當y=1時取等號.
故答案為:1.

點評 本題考查了復數的運算法則、模的計算公式、一次函數的單調性,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

4.已知空間向量$\overrightarrow{a}$=(0,$\frac{5}{4}$,-$\frac{5}{4}$),$\overrightarrow$=(x,0,-2),則“x=2”是“<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知橢圓的短軸長是焦距的2倍,則橢圓的離心率為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.如圖,E為正四棱錐P-ABCD側棱PD上異于P,D的一點,給出下列結論:
①側面PBC可以是正三角形;
②側面PBC可以是直角三角形;
③側面PAB上存在直線與CE平行;
④側面PAB上存在直線與CE垂直.
其中,所有正確結論的序號是(  )
A.①②③B.①③④C.②④D.①④

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.設復數z=2-i(i為虛數單位),則復數z2=3-4i.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.設復數z=i(1+i)(i為虛數單位),則復數z的實部為-1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.已知a>0,函數$f(x)=\left\{{\begin{array}{l}{-\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}+ax-\frac{4}{3},x≤1}\\{(a-1)lnx+\frac{1}{2}{x^2}-ax,x>1}\end{array}}\right.$若f(x)在區(qū)間(-a,2a)上單調遞增,則實數a的取值范圍是(0,$\frac{10}{9}$].

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知x和y是實數,i是虛數單位,(1+i)x+yi=(1+3i)i,則|x+yi|等于( 。
A.$\sqrt{5}$B.5C.$\sqrt{11}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.設x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則x2+y2的最大值為5.

查看答案和解析>>

同步練習冊答案