【題目】某科研團隊對例新冠肺炎確診患者的臨床特征進行了回顧性分析.其中名吸煙患者中,重癥人數(shù)為人,重癥比例約為;名非吸煙患者中,重癥人數(shù)為人,重癥比例為.根據(jù)以上數(shù)據(jù)繪制列聯(lián)表,如下:

吸煙人數(shù)

非吸煙人數(shù)

總計

重癥人數(shù)

30

120

150

輕癥人數(shù)

100

800

900

總計

130

920

1050

(1)根據(jù)列聯(lián)表數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為新冠肺炎重癥和吸煙有關(guān)?

(2)已知每例重癥患者平均治療費用約為萬元,每例輕癥患者平均治療費用約為萬元.現(xiàn)有吸煙確診患者20人,記這名患者的治療費用總和為,求.

附:

【答案】1)在犯錯的概率不超過的前提下認為新冠肺炎重癥和吸煙有關(guān).295.446

【解析】

1)由列聯(lián)表求得,并與比較,即可判斷;

(2)令表示20位吸煙確診患者中的重癥人數(shù),則,由題意可得,進而求解即可.

解:(1)根據(jù)列聯(lián)表中的數(shù)據(jù),得到

,

因此,在犯錯的概率不超過的前提下認為新冠肺炎重癥和吸煙有關(guān).

2)令表示20位吸煙確診患者中的重癥人數(shù),

由題知,

因為,即,

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知衡量病毒傳播能力的最重要指標叫做傳播指數(shù)RO.它指的是,在自然情況下(沒有外力介入,同時所有人都沒有免疫力),一個感染到某種傳染病的人,會把疾病傳染給多少人的平均數(shù).它的簡單計算公式是:確認病例增長率系列間隔,其中系列間隔是指在一個傳播鏈中,兩例連續(xù)病例的間隔時間(單位:天).根據(jù)統(tǒng)計,確認病例的平均增長率為,兩例連續(xù)病例的間隔時間的平均數(shù)為天,根據(jù)以上RO數(shù)據(jù)計算,若甲得這種傳染病,則輪傳播后由甲引起的得病的總?cè)藬?shù)約為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在幾何體中,如圖,四邊形為平行四邊形,,平面平面平面,

1)若三棱錐的體積為1,求;

2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四面體ABCD中,ABCBCD均是邊長為1的等邊三角形,已知四面體ABCD的四個頂點都在同一球面上,且AD是該球的直徑,則四面體ABCD的體積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,在底面上的射影為,于點.

1)求證:平面平面

2)若,求直線與平面所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線,曲線為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系.

1)求的極坐標方程;

2)射線的極坐標方程為,若分別與交于異于極點的兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是直角梯形,且是正三角形,的中點.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年春節(jié)前后,中國爆發(fā)新型冠狀病毒(SARS-Cov-2)如圖所示為124日至216日中國內(nèi)地(除湖北以外的)感染新型冠狀病毒新增人數(shù)的折線圖,為了預測分析數(shù)據(jù)的變化規(guī)律,建立了與時間變量的不同時間段的兩個線性回歸模型.根據(jù)124日至23日的數(shù)據(jù)(時間變量的值依次為1,2,3,4,5,67,8,9,10,11)建立模型①:;根據(jù)24日至216日的數(shù)據(jù)(時間變量的值依次為12,1314,15,1617,1819,20,21,22,2324)建立模型②:.

1

24

1

25

1

26

1

27

1

28

1

29

1

30

1

31

2

1

2

2

2

3

1

2

3

4

5

6

7

8

9

10

11

332

174

298

337

448

593

690

737

720

648

926

2

4

2

5

2

6

2

7

2

8

2

9

2

10

2

11

2

12

2

13

2

14

2

15

2

16

12

13

14

15

16

17

18

19

20

21

22

23

24

830

741

693

683

559

464

431

377

377

299

259

211

160

1)求出兩個回歸直線方程;(計算結(jié)果取整數(shù))

2)中國政府為了人民的生命安全,聽取專家意見,了解了病毒信息,并迅速做出一系列的隔離防護措施,但新冠狀病毒在世界范圍內(nèi)爆發(fā)時,某些歐美國家采取放任的態(tài)度,不治療、不隔離、不檢測,甚至不公布,請你用以上數(shù)據(jù)說明采取一系列措施的必要性,不采取措施的后果.

參考數(shù)據(jù):,,,

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy22px的焦點為F,過點F且斜率為1的直線l截得圓:x2+y2p2的弦長為2.

1)求拋物線C的方程;

2)若過點F作互相垂直的兩條直線l1、l2,l1與拋物線C交于AB兩點,l2與拋物線C交于D、E兩點,M、N分別為弦AB、DE的中點,求|MF||NF|的最小值.

查看答案和解析>>

同步練習冊答案