已知橢圓C:的離心率為,且經(jīng)過點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設(shè)斜率為1的直線l與橢圓C相交于,兩點,連接MA,MB并延長交直線x=4于P,Q兩點,設(shè)yP,yQ分別為點P,Q的縱坐標,且.求△ABM的面積.
(1) (2).
【解析】
試題分析:解:(Ⅰ)依題意,,所以. 2分
因為, 所以. 3分
橢圓方程為. 5分
(Ⅱ)因為直線l的斜率為1,可設(shè)l:, 6分
則,
消y得 , 7分
,得.
因為,,
所以 ,. 8分
設(shè)直線MA:,則;同理. 9分
因為 ,
所以 , 即. 10分
所以 ,
所以 ,
,
,
所以 , 所以 . 12分
所以 ,.
設(shè)△ABM的面積為S,直線l與x軸交點記為N,
所以.
所以 △ABM的面積為. 14分
考點:直線與橢圓的位置關(guān)系
點評:主要是考查了直線與橢圓的位置關(guān)系以及韋達定理的運用,屬于中檔題。
科目:高中數(shù)學 來源:2009年廣東省廣州市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學理卷 題型:選擇題
已知橢圓C:的離心率為,過右焦點且斜率為的直線與橢圓C相交于、兩點.若,則 =( )
A. B. C.2 D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆廣東省高二第一學期期末考試文科數(shù)學 題型:解答題
(本小題滿分12分)
已知橢圓C:,它的離心率為.直線與以原點為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年吉林一中高二下學期第一次月考數(shù)學文卷 題型:解答題
.已知橢圓C:的離心率為,橢圓C上任意一點到橢圓兩個焦點的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線:與橢圓C交于,兩點,點,且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com