17.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F且斜率為$\frac{1}{2}$的直線交橢圓于A,B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為( 。
A.$\frac{x^2}{45}+\frac{y^2}{36}=1$B.$\frac{x^2}{36}+\frac{y^2}{27}=1$C.$\frac{x^2}{27}+\frac{y^2}{18}=1$D.$\frac{x^2}{18}+\frac{y^2}{9}=1$

分析 設(shè)A(x1,y1),B(x2,y2),代入橢圓的方程,兩式相減,根據(jù)線段AB的中點(diǎn)坐標(biāo)為(1,-1),求出斜率,進(jìn)而可得a,b的關(guān)系,根據(jù)右焦點(diǎn)為F(3,0),求出a,b的值,即可得出橢圓的方程.

解答 解:設(shè)A(x1,y1),B(x2,y2),
則代入橢圓方程,兩式相減可得$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{{a}^{2}}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{^{2}}$=0,
∵線段AB的中點(diǎn)坐標(biāo)為(1,-1),
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{^{2}}{{a}^{2}}$,
∵直線的斜率為$\frac{1}{2}$,
∴$\frac{^{2}}{{a}^{2}}$=$\frac{1}{2}$,
∵右焦點(diǎn)為F(3,0),
∴a2-b2=9,
∴a2=18,b2=9,
∴橢圓方程為:$\frac{x^2}{18}+\frac{y^2}{9}=1$.
故選:D.

點(diǎn)評(píng) 本題考查橢圓的方程,考查點(diǎn)差法的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n展開(kāi)式中x的次數(shù)最大為4.
(1)求這個(gè)二項(xiàng)式的n值;
(2)求這個(gè)展開(kāi)式的一次項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.90°=$\frac{π}{2}$弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知命題p:2-c<x<2+c(c>0),命題q:x2-9x+18>0,如果命題p是q的充分不必要條件,則c的取值范圍是( 。
A.(0,1)B.(0,1]C.[1,4]D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)a,b,c∈R,函數(shù)f(x)=ax5-bx3+cx,若f(-3)=7,則f(3)的值為( 。
A.-13B.-7C.7D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)偶函數(shù)f(x)(x∈R)的導(dǎo)函數(shù)是函數(shù)f′(x),f(2)=0,當(dāng)x<0時(shí),xf′(x)-f(x)>0,則使得f(x)>0成立的x的取值范圍是( 。
A.(-∞,-2)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(2,+∞)D.(0,2)∪(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)y=f(x)的定義域是[0、1],則函數(shù)g(x)=$\frac{f(x)}{\sqrt{x-\frac{1}{2}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.[$\frac{1}{2}$,+∞]B.($\frac{1}{2}$,1)C.($\frac{1}{2}$,1]D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.A、B兩點(diǎn)到平面α的距離分別是3cm、5cm,點(diǎn)M是AB的中點(diǎn),則M點(diǎn)到平面α的距離是4或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)曲線y=xn+1(n∈N+)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,則log2012x1+log2012x2+…+log2012x2011的值為(  )
A.-log20122011B.-1C.(log20122011)-1D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案