分析 由a1,a2,a3均為正數,運用三元基本不等式,可得a1a2a3≤$\frac{1}{27}$,再由$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$≥3$\root{3}{\frac{1}{{a}_{1}{a}_{2}{a}_{3}}}$,即可得到所求最小值.
解答 解:a1,a2,a3均為正數,
由a1+a2+a3≥3$\root{3}{{a}_{1}{a}_{2}{a}_{3}}$,
可得$\root{3}{{a}_{1}{a}_{2}{a}_{3}}$≤$\frac{1}{3}$,
即a1a2a3≤$\frac{1}{27}$,
則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$≥3$\root{3}{\frac{1}{{a}_{1}{a}_{2}{a}_{3}}}$≥3$\root{3}{27}$=9.
當且僅當a1=a2=a3=$\frac{1}{3}$時,取得最小值9.
點評 本題考查最值的求法,注意運用三元基本不等式,考查運算能力,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{7}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{7}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com