在三棱錐SABC中,SA⊥平面ABC,SA=AB=AC=BC,點D是BC邊的中點,點E是線段AD上一點,且AE=3DE,點M是線段SD上一點,
(1)求證:BC⊥AM;
(2)若AM⊥平面SBC,求證:EM∥平面ABS.
科目:高中數(shù)學 來源: 題型:解答題
如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.
(1)求證:AF∥平面BDE;
(2)求證:CF⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐PABCD中,M、N分別是側(cè)棱PA和底面BC邊的中點,O是底面平行四邊形ABCD的對角線AC的中點.求證:過O、M、N三點的平面與側(cè)面PCD平行.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.
(1)求棱AA1與BC所成的角的大小;
(2)在棱B1C1上確定一點P,使二面角P-AB-A1的平面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在正三棱柱ABCDEF中,AB=2,AD=1.P是CF的延長線上一點,F(xiàn)P=t.過A、B、P三點的平面交FD于M,交FE于N.
(1)求證:MN∥平面CDE;
(2)當平面PAB⊥平面CDE時,求t的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在錐體PABCD中,ABCD是邊長為1的菱形,且∠DAB=60°,PA=PD=,PB=2,E、F分別是BC、PC的中點.證明:AD⊥平面DEF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點.
求證:(1)平面EFG∥平面ABC;(2)BC⊥SA.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐PABCD中,PA⊥底面ABCD,PC⊥AD,底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC,點E在棱PB上,且PE=2EB.
(1)求證:平面PAB⊥平面PCB;
(2)求證:PD∥平面EAC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com