【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線(xiàn)AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線(xiàn)l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
【答案】(1) (2)
【解析】試題分析:設(shè)出,由直線(xiàn)的斜率為求得,結(jié)合離心率求得,再由隱含條件求得,即可求橢圓方程;(2)點(diǎn)軸時(shí),不合題意;當(dāng)直線(xiàn)斜率存在時(shí),設(shè)直線(xiàn),聯(lián)立直線(xiàn)方程和橢圓方程,由判別式大于零求得的范圍,再由弦長(zhǎng)公式求得,由點(diǎn)到直線(xiàn)的距離公式求得到的距離,代入三角形面積公式,化簡(jiǎn)后換元,利用基本不等式求得最值,進(jìn)一步求出值,則直線(xiàn)方程可求.
試題解析:(1)設(shè),因?yàn)橹本(xiàn)的斜率為,
所以, .
又
解得,
所以橢圓的方程為.
(2)解:設(shè)
由題意可設(shè)直線(xiàn)的方程為: ,
聯(lián)立消去得,
當(dāng),所以,即或時(shí)
.
所以
點(diǎn)到直線(xiàn)的距離
所以,
設(shè),則,
,
當(dāng)且僅當(dāng),即,
解得時(shí)取等號(hào),
滿(mǎn)足
所以的面積最大時(shí)直線(xiàn)的方程為: 或.
【方法點(diǎn)晴】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線(xiàn)求最值,屬于難題.解決圓錐曲線(xiàn)中的最值問(wèn)題一般有兩種方法:一是幾何意義,特別是用圓錐曲線(xiàn)的定義和平面幾何的有關(guān)結(jié)論來(lái)解決,非常巧妙;二是將圓錐曲線(xiàn)中最值問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題(2)就是用的這種思路,利用均值不等式法求三角形最值的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,右焦點(diǎn)為,斜率為1的直線(xiàn)與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.
(1)求橢圓的方程;
(2) 為橢圓上任意一點(diǎn),若,求的最大值和最小值.
(3)求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿(mǎn)足條件b2+c2﹣a2=bc=1,cosBcosC=﹣ ,則△ABC的周長(zhǎng)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求實(shí)數(shù)m的值;
(2)若ARB,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率為,以橢圓長(zhǎng)、短軸四個(gè)端點(diǎn)為頂點(diǎn)為四邊形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為、,當(dāng)動(dòng)點(diǎn)在定直線(xiàn)上運(yùn)動(dòng)時(shí),直線(xiàn)分別交橢圓于兩點(diǎn)、,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓E的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,取相同單位長(zhǎng)度(其中(ρ,θ),ρ≥0,θ∈[0,2π))).
(1)直線(xiàn)l過(guò)原點(diǎn),且它的傾斜角α= ,求l與圓E的交點(diǎn)A的極坐標(biāo)(點(diǎn)A不是坐標(biāo)原點(diǎn));
(2)直線(xiàn)m過(guò)線(xiàn)段OA中點(diǎn)M,且直線(xiàn)m交圓E于B、C兩點(diǎn),求||MB|﹣|MC||的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線(xiàn)l1:y=k1x+1,l2:y=k2x-1,其中實(shí)數(shù)k1,k2滿(mǎn)足k1k2+2=0. 證明:
(1)l1與l2相交;
(2)l1與l2的交點(diǎn)在曲線(xiàn)2x2+y2=1上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga (其中a>0,且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性并給出證明;
(3)若x∈時(shí),函數(shù)f(x)的值域是[0,1],求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 +y2=1,A,B,C,D為橢圓上四個(gè)動(dòng)點(diǎn),且AC,BD相交于原點(diǎn)O,設(shè)A(x1 , y1),B(x2 , y2)滿(mǎn)足 = .
(1)求證: + = ;
(2)kAB+kBC的值是否為定值,若是,請(qǐng)求出此定值,并求出四邊形ABCD面積的最大值,否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com