若F1,F(xiàn)2分別為雙曲線C:的左、右焦點,點A在雙曲線C上,點M的坐標為(2,0),AM為∠F1AF2的平分線.則|AF2|的值為( )
A.3
B.6
C.9
D.27
【答案】分析:利用雙曲線的方程求出雙曲線的參數(shù)值,利用內(nèi)角平分線定理得到兩條焦半徑的關(guān)系,再利用雙曲線的定義得到兩條焦半徑的另一條關(guān)系,聯(lián)立求出焦半徑|AF2|.
解答:解:雙曲線C:的左、右焦點坐標分別為F1(-6,0),F(xiàn)2(6,0).
不妨設(shè)A在雙曲線的右支上
∵AM為∠F1AF2的平分線
==2
又∵|AF1|-|AF2|=2a=6
解得|AF2|=6
故選B.
點評:本題著重考查了雙曲線的簡單性質(zhì)、三角形內(nèi)角平分線定理和余弦定理等知識點,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點,P為雙曲線左支上任一點,若
|PF2|2
|PF1|
的最小值為8a,則雙曲線的離心率e的取值范圍是( 。
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點,P為雙曲線左支上任一點,若
|PF2|2
|PF1|
的最小值為8a,則雙曲線的離心率e的取值范圍是(  )
A.(1,+∞)B.(0,3]C.(1,3]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖北省襄樊四中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖北省襄樊四中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年陜西省榆林市神木中學高三(上)數(shù)學寒假作業(yè)1(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點,P為雙曲線左支上任一點,若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步練習冊答案