精英家教網 > 高中數學 > 題目詳情

將參數方程化為普通方程為(    )

A.   B.   C.   D.
解析: 轉化為普通方程:,但是
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知曲線C的參數方程為
x=sinα
y=cosα
(α∈R,α為參數).當極坐標系的極點與直角坐標系的原點重合,且極軸在x軸的正半軸上時,曲線D的極坐標力程為ρsin(θ+
π
4
)=
2
a.
(I)試將曲線C的方程化為普通方程,曲線D的方程化為直角坐標方程;
(II)試確定實數a的取值范圍,使曲線C與曲線D有公共點.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l的參數方程為
x=
3
+
1
2
t
y=2+
3
2
t
(t為參數),曲線C的極坐標方程為ρ=4.
(1)將曲線C的極坐標方程化為普通方程;
(2)若直線l與曲線C交于A、B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將選題號填入括號中.
(1)選修4一2:矩陣與變換
求矩陣A=
2,1
3,0
的特征值及對應的特征向量.
(2)選修4一4:坐標系與參數方程
已知直線l的參數方程:
x=t
y=1+2t
(t為參數)和圓C的極坐標方程:ρ=2
2
sin(θ+
π
4
)

(Ⅰ)將直線l的參數方程化為普通方程,圓C的極坐標方程化為直角坐標方程;
(Ⅱ)判斷直線l和圓C的位置關系.
(3)選修4一5:不等式選講
已知函數f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實數x的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

坐標系與參數方程選講.
已知曲線C:
x=cosθ
y=sinθ
(θ為參數).
(1)將C參數方程化為普通方程;
(2)若把C上各點的坐標經過伸縮變換
x′=3x
y′=2y
后得到曲線C,求曲線C上任意一點到兩坐標軸距離之積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•廈門模擬)本小題設有(1)(2)(3)三個選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知e1=
1
1
是矩陣M=
a
 1
0
 b
屬于特征值λ1=2的一個特征向量.
(I)求矩陣M;
(Ⅱ)若a=
2
1
,求M10a.
(2)選修4-4:坐標系與參數方程
在平面直角坐標系xOy中,A(l,0),B(2,0)是兩個定點,曲線C的參數方程為
AB
為參數).
(I)將曲線C的參數方程化為普通方程;
(Ⅱ)以A(l,0為極點,|
AB
|為長度單位,射線AB為極軸建立極坐標系,求曲線C的極坐標方程.
(3)選修4-5:不等式選講
(I)試證明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
(Ⅱ)若x2+y2=2,且|x|≠|y|,求
1
(x+y
)
2
 
+
1
(x-y
)
2
 
的最小值.

查看答案和解析>>

同步練習冊答案