分析:(1)利用導數(shù)來求,先求函數(shù)的導數(shù),令導數(shù)大于0,解得x的范圍為函數(shù)的增區(qū)間,令導數(shù)小于0,解得x的范圍為函數(shù)的減區(qū)間.因為含參數(shù)a,所以做題時對參數(shù)進行討論.
(2)先把要證的不等式化簡為(x+1)lnx-2(x-1)>0,再把左邊看做一個函數(shù),只需用導數(shù)判斷該函數(shù)的單調性,利用單調性比較大小即可.
解答:解(1)f(x)的定義域為(0,+∞)
f′(x)=-=(x>0)①若a≤0,則f'(x)>0,f(x)在(0,+∞)上單調遞增
②若,1°當0<x<a時,f'(x)<0,f(x)在(0,a)上單調遞減
2°當x>a時,f'(x)>0,f(x)在(a,+∞)上單調遞增
(2)∵1<x<2,∴
-<?(x+1)lnx-2(x-1)>0
令F(x)=(x+1)lnx-2(x-1)
則
F′(x)=lnx+-2=lnx+-1由(1)知,當a=1時,[f(x)]
min=f(1)=0∴f(x)≥f(1)=0,即F'(x)≥0,F(xiàn)(x)在上為單調遞增,,即
-< 點評:本題主要考查了利用導數(shù)求函數(shù)的單調區(qū)間,以及證明不等式.