3.已知函數(shù)f(x)=$\frac{a}{3}$x3-$\frac{1}{2}$(a+1)x2+x-$\frac{1}{3}$
(1)若函數(shù)f(x)的圖象在點(diǎn)(2,f(2))處的切線方程為9x-y+b=0,求實(shí)數(shù)a,b的值;
(2)求f(x)的單調(diào)減區(qū)間,并求函數(shù)f(x)的極值;
(3)若g(x)=f(x)+$\frac{1}{3}$+mx是奇函數(shù),且函數(shù)g(x)在x=-1時(shí)取得極值,求m的值.
(4)在條件(3)下,若方程g(x)+k=0在區(qū)間[-3,3]上有一解,求實(shí)數(shù)k的取值范圍.

分析 (1)求導(dǎo)函數(shù),利用函數(shù)f(x)的圖象在點(diǎn)(2,f(2))處的切線方程為9x-y+b=0,即可求實(shí)數(shù)a,b的值;
(2)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值;
(3)根據(jù)函數(shù)的奇偶性,求出a的值,根據(jù)g′(-1)=0,求出m的值即可;
(4)求出g(x)的單調(diào)區(qū)間,函數(shù)g(x)的圖象,結(jié)合圖象求出k的范圍即可.

解答 解:(1)f′(x)=ax2-(a+1)x+1(a∈R),
由f′(2)=9,得a=5,
∴f(x)=$\frac{5}{3}$x3-3x2+x-$\frac{1}{3}$,
∴f(2)=3,
∴(2,3)在直線9x-y+b=0上,
∴b=-15;
(2)f′(x)=ax2-(a+1)x+1=(ax-1)(x-1),
①a=0時(shí),f′(x)=1-x,
令f′(x)<0,解得:x>1,
∴f(x)在(1,+∞)遞減,f(x)極大值=f(1)=$\frac{1}{3}$,
②0<a<1時(shí),$\frac{1}{a}$>1,
令f′(x)<0,解得:1<x<$\frac{1}{a}$,
∴f(x)在(1,$\frac{1}{a}$)遞減,
∴f(x)極大值=f(1)=$\frac{1-a}{6}$,f(x)極小值=f($\frac{1}{a}$)=$\frac{1}{2a}$-$\frac{1}{{6a}^{2}}$-$\frac{1}{3}$,
③a=1時(shí),f′(x)≥0,f(x)遞增,無(wú)極值,
④a>1時(shí),$\frac{1}{a}$<1,令f′(x)<0,解得:$\frac{1}{a}$<x<1,
f(x)在($\frac{1}{a}$,1)遞減,
f(x)極小值=f(1)=$\frac{1-a}{6}$,f(x)極大值=f($\frac{1}{a}$)=$\frac{1}{2a}$-$\frac{1}{{6a}^{2}}$-$\frac{1}{3}$,
⑤a<0時(shí),$\frac{1}{a}$<1,令f′(x)<0,解得:$\frac{1}{a}$<x<1,
f(x)在($\frac{1}{a}$,1)遞減,
f(x)極小值=f(1)=$\frac{1-a}{6}$,f(x)極大值=f($\frac{1}{a}$)=$\frac{1}{2a}$-$\frac{1}{{6a}^{2}}$-$\frac{1}{3}$;
(3)g(x)=$\frac{1}{3}$ax3-$\frac{1}{2}$(a+1)x2+(m+1)x,
g(-x)=-$\frac{1}{3}$ax3+$\frac{1}{2}$(a+1)x2-(m+1)x,g(x)是奇函數(shù),
∴a+1=0,解得:a=-1,
∴g(x)=-$\frac{1}{3}$x3+(m+1)x,g′(x)=-x2+(m+1),
g′(-1)=-1+m+1=0,解得:m=0;
(4)在條件(3)下,g(x)=-$\frac{1}{3}$x3+x,
g′(x)=-x2+1,令g′(x)>0,解得:-1<x<1,
令g′(x)<0,解得:x>1或x<-1,
∴g(x)在[-3,-1)遞減,在(-1,1)遞增,在(1,3]遞減,
而g(-3)=6,g(-1)=-$\frac{2}{3}$,g(1)=$\frac{2}{3}$,g(3)=-6,
函數(shù)函數(shù)g(x)的圖象,如圖示:

結(jié)合圖象,$\frac{2}{3}$<k≤6或-6≤k<-$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想、數(shù)形結(jié)合思想,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{x+1}{{e}^{x}}$+alnx有極值點(diǎn),其中e為自然對(duì)數(shù)的底數(shù).
(1)求a的取值范圍;
(2)若a∈(0,$\frac{1}{e}$],求證:?x∈(0,2],都有f(x)<$\frac{1+a-{a}^{2}}{{e}^{a}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓C的右焦點(diǎn)F(1,0),過(guò)F的直線l與橢圓C交于A,B兩點(diǎn),當(dāng)l垂直于x軸時(shí),|AB|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在點(diǎn)T,使得$\overrightarrow{TA}$•$\overrightarrow{TB}$為定值?若存在,求出點(diǎn)T坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.?dāng)?shù)列{an}滿足a1=2,an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,則a5的值為(  )
A.$\frac{2}{5}$B.$\frac{2}{7}$C.$\frac{2}{9}$D.$\frac{2}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知a,b∈R,則“0≤a≤1且0≤b≤1”是“0≤ab≤1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.直線3x-4y+2=0的單位法向量$\overrightarrow{n_0}$=$±(\frac{3}{5},\frac{4}{5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$,則$\frac{{{x^2}+{y^2}}}{xy}$的取值范圍是[2,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象(部分)如圖所示,則要得到y(tǒng)=f(x)的圖象,只需要把y=Asinωx的圖象(  )
A.向左平移$\frac{π}{6}$個(gè)單位B.向右平移$\frac{π}{6}$個(gè)單位
C.向左平移$\frac{1}{6}$個(gè)單位D.向右平移$\frac{1}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知A(-2,0)、B(2,0),P(2,4),動(dòng)點(diǎn)滿足$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,M的軌跡為曲線C.
(1)求動(dòng)點(diǎn)M的軌跡方程;
(2)過(guò)P作曲線C的切線,求切線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案