函數(shù)y=f(x)的圖象如圖所示,則y=f(x)的解析式為


  1. A.
    y=sin2x-2
  2. B.
    y=2cos3x-1
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:本題可以使用排除法進(jìn)行解答,根據(jù)函數(shù)圖象分析出函數(shù)的最值,進(jìn)而分析四個(gè)答案中四個(gè)函數(shù)的最值,將不符合條件的答案排除掉,即可得到正確的答案.
解答:由已知中函數(shù)的解析式,我們可得函數(shù)的最大值為2,最小值為0,
而A中函數(shù)y=sin2x-2,最大值為-1,最小值為-3,不滿足要求,故A不正確;
B中函數(shù)y=2cos3x-1,最大值為1,最小值為-3,不滿足要求,故B不正確;
C中函數(shù),最大值為0,最小值為-2,不滿足要求,故C不正確;
故選D.
點(diǎn)評:本題考查的知識點(diǎn)是由y=Asin(ωx+φ)的部分圖象確定其解析式,其中排除法是解答選擇題比較常用的方法,而根據(jù)函數(shù)的圖象分析出函數(shù)的最值是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)的圖象過點(diǎn)(2,
2
2
),試求出此函數(shù)的解析式,并作出圖象,判斷奇偶性、單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+alnxx
,(a∈R).
(1)若函數(shù)f(x)在x=1處取得極值,求實(shí)數(shù)a的值;
(2)在(1)條件下,若直線y=kx與函數(shù)y=f(x)的圖象相切,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=lnx-2的圖象按向量
α
=(-1,2)平移得到函數(shù)y=f(x)的圖象.
(1)若x>0,證明;f(x)>
2x
x+2
;
(2不等式
1
2
x2≤f(x2)+m2-2bm-3對b∈[-1,1],x∈[-1,1]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)設(shè)函數(shù)y=f(x)=x(x-a)(x-b)(a、b∈R).
(Ⅰ)若a≠b,ab≠0,過兩點(diǎn)(0,0)、(a,0)的中點(diǎn)作與x軸垂直的直線,此直線與函數(shù)y=f(x)的圖象交于點(diǎn)P(x0,f(x0)),求證:函數(shù)y=f(x)在點(diǎn)P處的切 線過點(diǎn)(
4
3
3
,0);
(Ⅱ)若a=b(a≠0),且當(dāng)x∈[0,|a|+1]時(shí)f(x)<2a2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對應(yīng)值如下表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,給出關(guān)于f(x)的下列命題:
x -1 0 2 4 5
f(x) 1 2 0 2 1
①函數(shù)y=f(x)在x=2取到極小值;
②函數(shù)f(x)在[0,1]是減函數(shù),在[1,2]是增函數(shù);
③當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn);
④如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最小值為0.
其中所有正確命題是
①③④
①③④
(寫出正確命題的序號).

查看答案和解析>>

同步練習(xí)冊答案