【題目】三位數(shù)中,如果百位數(shù)字、十位數(shù)字、個位數(shù)字剛好能構(gòu)成等差數(shù)列,則稱為“等差三位數(shù)”,例如:147,642,777,420等等.等差三位數(shù)的總個數(shù)為( )
A.32B.36C.40D.45
【答案】D
【解析】
由題意分公差為0,1,2,3,4,-1,-2,-3,-4九種情況,分別得出各三位數(shù)的個數(shù),運用加法原理可得選項.
由題意得若百位數(shù)字、十位數(shù)字、個位數(shù)字構(gòu)成公差為0的“等差三位數(shù)”,則只要各位數(shù)字不為零即可,有9個;
若百位數(shù)字、十位數(shù)字個位數(shù)字構(gòu)成公差為1的“等差三位數(shù)”,則百位數(shù)字不大于7,有7個;
若百位數(shù)字、十位數(shù)字、個位數(shù)字構(gòu)成公差為2的“等差三位數(shù)”,則百位數(shù)字不大于5,有5個;
若百位數(shù)字十位數(shù)字個位數(shù)字構(gòu)成公差為3的“等差三位數(shù)”,則百位數(shù)字不大于3,有3個;若百位數(shù)字、十位數(shù)字、個位數(shù)字構(gòu)成公差為4的“等差三位數(shù)”,則百位數(shù)字只能為1,有1個;
若百位數(shù)字、十位數(shù)字、個位數(shù)字構(gòu)成公差為的“等差三位數(shù),則百位數(shù)字不小于2,有8個;
若百位數(shù)字、十位數(shù)字、個位數(shù)字構(gòu)成公差為的“等差三位數(shù)”,則百位數(shù)字不小于4,有6個;
若百位數(shù)字、十位數(shù)字、個位數(shù)字構(gòu)成公差為的“等差三位數(shù)”,則百位數(shù)字不小于6,有4個;
若百位數(shù)字、十位數(shù)字個位數(shù)字構(gòu)成公差為的“等差三位數(shù)”,則百位數(shù)字不小于8有2個.
綜上所述,“等差三位數(shù)”的總數(shù)為個,
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)F是橢圓的左焦點,過點F且斜率為正的直線與E相交于A、B兩點,過點A、B分別作直線AM和BN滿足AM⊥l,BN⊥l,且直線AM、BN分別與x軸相交于M和N.試求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為,設(shè)曲線與曲線的公共弦所在直線為l.
(1)在直角坐標系下,求曲線與曲線的普通方程;
(2)若以坐標原點為中心,直線l順時針方向旋轉(zhuǎn)后與曲線、曲線分別在第一象限交于A、B兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,已知橢圓:的離心率為,為橢圓上位于第一象限上的點,為橢圓的上頂點,直線與軸相交于點,,的面積為6.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓有且只有一個公共點,設(shè)橢圓的兩焦點到直線的距離分別是,,試問是否為定值?若是,求出其值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓C:的離心率為,其右焦點到橢圓C外一點的距離為,不過原點O的直線l與橢圓C相交于A,B兩點,且線段AB的長度為2.
1求橢圓C的方程;
2求面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F1(﹣c,0),F2(c,0)分別為雙曲線1(a>0,b>0)的左、右焦點,以坐標原點O為圓心,c為半徑的圓與雙曲線在第二象限交于點P,若tan∠PF1F2,則該雙曲線的離心率為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南北朝時期的數(shù)學家祖暅提出了計算幾何體體積的祖暅原理:“冪勢既同,則積不容異“.意思是兩個同高的幾何體,如果在等高處的截面積都相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為( )
A.πB.πC.4D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】基于移動互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風靡全國,帶給人們新的出行體驗,某共享單車運營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進行了統(tǒng)計,設(shè)月份代碼為x,市場占有率為y(%),得結(jié)果如下表
年月 | 2019.11 | 2019.12 | 2020.1 | 2020.2 | 2020.3 | 2020.4 |
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 9 | 11 | 14 | 13 | 18 | 19 |
(1)觀察數(shù)據(jù),可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明(精確到0.001);
(2)求y關(guān)于x的線性回歸方程,并預測該公司2020年6月份的市場占有率;
(3)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車投入市場,現(xiàn)有采購成本分別為1000元/輛和800元/輛的甲、乙兩款車型,報廢年限不相同.考慮到公司的經(jīng)濟效益,該公司決定先對這兩款單車各100輛進行科學模擬測試,得到兩款單車使用壽命統(tǒng)計如下表:
報廢年限 車輛數(shù) 車型 | 1年 | 2年 | 3年 | 4年 | 總計 |
甲款 | 10 | 40 | 30 | 20 | 100 |
乙款 | 15 | 35 | 40 | 10 | 100 |
經(jīng)測算,平均每輛單車每年可以為公司帶來收入500元,不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且用頻率估計每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),如果你是該公司的負責人,你會選擇采購哪款車型?
參考數(shù)據(jù):,,,.
參考公式,相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com