【題目】如果函數(shù)在定義域內(nèi)存在區(qū)間,使得該函數(shù)在區(qū)間上的值域?yàn)?/span>,則稱函數(shù)是該定義域上的“和諧函數(shù)”.

(1)求證:函數(shù)是“和諧函數(shù)”;

(2)若函數(shù)是“和諧函數(shù)”,求實(shí)數(shù)的取值范圍.

【答案】(1)見解析;(2)

【解析】試題分析:(1)利用“和諧函數(shù)”的定義將問題轉(zhuǎn)化為,再驗(yàn)證進(jìn)行求解;(2)利用“和諧函數(shù)”的定義將問題轉(zhuǎn)化為的圖像至少有2個(gè)交點(diǎn),再利用整體換元和數(shù)形結(jié)合思想進(jìn)行求解.

試題解析:(1)要證:存在區(qū)間使得上的值域?yàn)?/span>

又由于是一個(gè)單調(diào)遞増的函數(shù),且定義域?yàn)?/span>

故只需證存在實(shí)數(shù)滿足,且有

觀察得

即存在符合題意

故函數(shù)是“和諧函數(shù)”

(2)由題,即存在實(shí)數(shù)滿足,使得在區(qū)間上的值域?yàn)?/span>,

由于單調(diào)遞増,從而有,

該方程組等價(jià)于方程有至少2個(gè)解,

上至少有2個(gè)解,

的圖像至少有2個(gè)交點(diǎn),

,則,從而有,

,配方得,

,作出的圖像可知, 時(shí)有兩個(gè)交點(diǎn),

綜上, 的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面有命題:

①y=|sinx-|的周期是2π;

②y=sinx+sin|x|的值域是[0,2] ;

③方程cosx=lgx有三解;

為正實(shí)數(shù),上遞增,那么的取值范圍是

⑤在y=3sin(2x+)中,若f(x)=f(x2)=0,則x1-x2必為的整數(shù)倍;

⑥若A、B是銳角△ABC的兩個(gè)內(nèi)角,則點(diǎn)P(cosB-sinA,sinB-cosA)在第二象限;

⑦在中,若,則鈍角三角形。

其中真命題個(gè)數(shù)為(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直三棱柱ABCA1B1C1中,AC3,BC4AB5,AA1=4,點(diǎn)DAB的中點(diǎn).

(1)求證:ACBC1

(2)求證:AC1平面CDB1;

(3)求異面直線AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1(﹣c,0)、F2(c,0)分別是橢圓G: 的左、右焦點(diǎn),點(diǎn)M是橢圓上一點(diǎn),且MF2⊥F1F2 , |MF1|﹣|MF2|= a.
(1)求橢圓G的方程;
(2)若斜率為1的直線l與橢圓G交于A、B兩點(diǎn),以AB為底作等腰三角形,頂點(diǎn)為P(﹣3,2),求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是兩條不同的直線, 是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,則 ②若,則

③若,則 ④若,則

其中正確命題的序號(hào)是( )

A. ①和② B. ②和③ C. ③和④ D. ①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的中線與中位線相交于已知旋轉(zhuǎn)過程中的一個(gè)圖形,給出以下四個(gè)命題:平面②平面平面;③動(dòng)點(diǎn)在平面上的射影在線段上;④異面直線不可能垂直. 其中正確命題的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓過點(diǎn),且與圓 ()關(guān)于軸對(duì)稱.

(I)求圓的方程;

(II)若有相互垂直的兩條直線,都過點(diǎn),且被圓所截得弦長(zhǎng)分別是,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(Ⅰ)求角A的大。
(Ⅱ)若△ABC的面積S=5 ,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)當(dāng)時(shí),證明:函數(shù)的零點(diǎn)與函數(shù)的零點(diǎn)之和小于3;

(2)若對(duì)任意 , ,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案