分析 (1)取SD中點F,連結AF,PF.證明PQ∥AF.利用直線與平面平行的判定定理證明PQ∥平面SAD.
(2)連結BD,證明SE⊥AD.推出SE⊥平面ABCD,得到SE⊥AC.證明EQ⊥AC,然后證明AC⊥平面SEQ,即可得出結論.
解答 證明:(1)取SD中點F,連結AF,PF.
因為 P,F(xiàn)分別是棱SC,SD的中點,
所以 FP∥CD,且FP=$\frac{1}{2}$CD.
又因為菱形ABCD中,Q是AB的中點,
所以 AQ∥CD,且AQ=$\frac{1}{2}$CD.
所以 FP∥AQ且FP=AQ.
所以 AQPF為平行四邊形.
所以 PQ∥AF.
又因為 PQ?平面SAD,
AF?平面SAD,
所以 PQ∥平面SAD;
(2)連結BD,
因為△SAD中SA=SD,點E棱AD的中點,
所以 SE⊥AD,
又 平面SAD⊥平面ABCD,
平面SAD∩平面ABCD=AD,
SE?平面SAD,
所以 SE⊥平面ABCD,
所以SE⊥AC.
因為 底面ABCD為菱形,
E,Q分別是棱AD,AB的中點,
所以 BD⊥AC,EQ∥BD.
所以 EQ⊥AC,
因為 SE∩EQ=E,
所以 AC⊥平面SEQ.
因為AC?平面SAC,所以平面SAC⊥平面SEQ.
點評 本題考查直線與平面平行以及直線與平面、平面與平面垂直的判定定理的應用,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $-\frac{3}{5}$ | D. | $-\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | $\frac{37}{33}$ | C. | $\frac{10}{11}$ | D. | $\frac{67}{66}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x>3或-3<x<0} | B. | {x|x<3或0<x<-3} | C. | {x|x<-3或x>3} | D. | {x|-3<x<0或0<x<3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{1}{2}$,+∞) | B. | (-4,+∞) | C. | (-$\frac{5}{8}$,+∞) | D. | [-$\frac{5}{8}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com