(2012•廣安二模)已知角α的終邊經(jīng)過點P(-4,3),則tan(α+
π
4
)
的值等于( 。
分析:由角α的終邊經(jīng)過點P(-4,3),利用任意角的三角函數(shù)定義求出tanα的值,然后利用兩角和與差的正切函數(shù)公式及特殊角的三角函數(shù)值化簡所求的式子后,將tanα的值代入即可求出值.
解答:解:∵角α的終邊經(jīng)過點P(-4,3),
∴tanα=-
3
4

則tan(α+
π
4
)=
tanα+tan
π
4
1-tanαtan
π
4
=
-
3
4
+1
1+
3
4
=
1
7

故選B
點評:此題考查了兩角和與差的正切函數(shù)公式,特殊角的三角函數(shù)值,以及任意角的三角函數(shù)定義,根據(jù)題意得出tanα的值是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•廣安二模)將函數(shù)y=cos(x-
π
3
)
的圖象上的各點的橫坐標伸長到原來的2倍(縱坐標不變),再向左平移
π
6
個單位,所得函數(shù)的圖象的一條對稱軸為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣安二模)設x1、x2(x1≠x2)是函數(shù)f(x)=ax3+bx2-a2x(a>0)的兩個極值點.
(1)若x1=-1,x2=2,求函數(shù)f(x)的解析式;
(2)若|x1|+|x2|=2
2
,求b的最大值..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣安二模)已知A(3,
3
),O為原點,點P(x,y)的坐標滿足
3
x-y≤0
x-
3
y+2≥0
y≥0
,則
OA
OP
|
OA
|
取最大值時點P的坐標是
(1,
3
(1,
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣安二模)設全集U={-1,0,1,2,3,4,5},A={1,2,5},B={0,1,2,3},則B∩(CUA)=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣安二模)已知函數(shù)f(x)=
1
1-x2
(x<-1)
,則f-1(-
1
8
)
=(  )

查看答案和解析>>

同步練習冊答案