【題目】已知函數(shù), (),且曲線在點處的切線方程為.
(1)求實數(shù)的值及函數(shù)的最大值;
(2)當(dāng)時,記函數(shù)的最小值為,求的取值范圍.
【答案】(1),最大值.(2)
【解析】試題分析:(1)題設(shè)給出了在處的切線,也是,從中解出即可.(2)中要求的最小值,因此要考慮的單調(diào)性,也就是考慮的符號的變化,但的零點不易求得,所以利用(1)的結(jié)論先確定在給定的范圍上有唯一的零點,通過零點滿足的關(guān)系式化簡在零點處的函數(shù)值表達(dá)式(也是的最小值),最終求出最小值得范圍.
解析:(1)函數(shù)的定義域為, ,因的圖象在點處的切線方程為,所以也即是,解得,所以,故.
令,得,
當(dāng)時, , 單調(diào)遞增;
當(dāng)時, , 單調(diào)遞減.
所以當(dāng)時, 取得最大值.
(2)∵,∴,令,由(1)知道在是增函數(shù),故在上為增函數(shù),又, ,因此存在唯一的,使得,也就是即.
當(dāng)時, ,所以, 單調(diào)遞減;當(dāng)時, , 單調(diào)遞增,所以的最小值為.令,因為,所以在單調(diào)遞減,從而,即的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點,在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,制作工藝十分復(fù)雜,它的制作過程必須先后經(jīng)過兩次燒制,當(dāng)?shù)谝淮螣坪细窈蠓娇蛇M入第二次燒制,兩次燒制過程相互獨立。某陶瓷廠準(zhǔn)備仿制甲、乙、丙三件不同的唐三彩工藝品,根據(jù)該廠全面治污后的技術(shù)水平,經(jīng)過第一次燒制后,甲、乙、丙三件工藝品合格的概率依次為, , ,經(jīng)過第二次燒制后,甲、乙、丙三件工藝品合格的概率依次為, , .
(1)求第一次燒制后甲、乙、丙三件中恰有一件工藝品合格的概率;
(2)經(jīng)過前后兩次燒制后,甲、乙、丙三件工藝品成為合格工藝品的件數(shù)為,求隨機變量的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線: (為參數(shù))和定點, , 是此圓錐曲線的左、右焦點.
(1)以原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,求直線的極坐標(biāo)方程;
(2)經(jīng)過且與直線垂直的直線交此圓錐曲線于, 兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一盒中裝有除顏色外其余均相同的12個小球,從中隨機取出1個球,取出紅球的概率為,取出黑球的概率為,取出白球的概率為,取出綠球的概率為.求:
(1)取出的1個球是紅球或黑球的概率;
(2)取出的1個球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側(cè)棱,點分別為棱的中點, 的重心為,直線垂直于平面.
(1)求證:直線平面;
(2)求二面角的余弦.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知四棱錐中, 平面,底面是菱形,且. , 、的中點分別為, .
(Ⅰ)求證.
(Ⅱ)求二面角的余弦值.
(Ⅲ)在線段上是否存在一點,使得平行于平面?若存在,指出在上的位置并給予證明,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將y=sinx的圖象
A. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變
B. 向左平移至個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變
C. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變
D. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為常數(shù)).
(Ⅰ) 函數(shù)的圖象在點處的切線與函數(shù)的圖象相切,求實數(shù)的值;
(Ⅱ) 若, ,且,都有成立,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com