【題目】已知等差數列{an}的前n項和為Sn , 且S3=9,a2a4=21,數列{bn}滿足 ,若 ,則n的最小值為( )
A.6
B.7
C.8
D.9
科目:高中數學 來源: 題型:
【題目】某高校調查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是[17.5,30],樣本數據分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據直方圖,若這200名學生中每周的自習時間不超過m小時的人數為164,則m的值約為( )
A.26.25
B.26.5
C.26.75
D.27
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=ln(ax+b)+x2(a≠0).
(1)若曲線y=f(x)在點(1,f(1))處的切線方程為y=x,求a,b的值;
(2)若f(x)≤x2+x恒成立,求ab的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】宿州市某登山愛好者為了解山高y(百米)與氣溫x(℃)之間的關系,隨機統(tǒng)計了4次山高與相應的氣溫,并制作了對照表,由表中數據,得到線性回歸方程為y=﹣2x+a,由此估計山高為72(百米)處的氣溫為( )
氣溫x(℃) | 18 | 13 | 10 | ﹣1 |
山高y(百米) | 24 | 34 | 38 | 64 |
A.﹣10
B.﹣8
C.﹣6
D.﹣4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車進駐城市,綠色出行引領時尚,某市有統(tǒng)計數據顯示,2016年該市共享單車用戶年齡等級分布如圖1所示,一周內市民使用單車的頻率分布扇形圖如圖2所示,若將共享單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,將一周內使用的次數為6次或6次以上的稱為“經常使用單車用戶”,使用次數為5次或不足5次的稱為“不常使用單車用戶”,已知在“經常使用單車用戶”中有 是“年輕人”.
(Ⅰ)現對該市市民進行“經常使用共享單車與年齡關系”的調查,采用隨機抽樣的方法,抽取一個容量為200的樣本,請你根據圖表中的數據,補全下列2×2列聯(lián)表,并根據列聯(lián)表的獨立性檢驗,判斷能有多大把握可以認為經常使用共享單車與年齡有關?
使用共享單車情況與年齡列聯(lián)表
年輕人 | 非年輕人 | 合計 | |
經常使用共享單車用戶 | 120 | ||
不常使用共享單車用戶 | 80 | ||
合計 | 160 | 40 | 200 |
(Ⅱ)將頻率視為概率,若從該市市民中隨機任取3人,設其中經常使用共享單車的“非年輕人”人數為隨機變量X,求X的分布列與期望.
(參考數據:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
其中,K2= ,n=a+b+c+d)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項和記為Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)當t為何值時,數列{an}為等比數列?
(2)在(1)的條件下,若等差數列{bn}的前n項和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比數列,求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設定義在R上的偶函數y=f(x),滿足對任意t∈R都有f(t)=f(2﹣t),且x∈(0,1]時,f(x)= ,a=f( ),b=f( ),c=f( ),則( )
A.b<c<a
B.a<b<c
C.c<a<b
D.b<a<c
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com