【題目】如圖,四棱錐中,底面為矩形,平面,分別為,的中點.

1)證明:平面;

2)若與平面所成的角為,求點到平面的距離.

【答案】(1)證明見解析(2)

【解析】

1)取的中點,連接,,由中位線定理可證,,再由已知條件可得,可證四邊形為平行四邊形,即可得證結(jié)論;

2 平面,點到平面的距離相等,轉(zhuǎn)化為求到平面的距離相等,連接,取的中點,連接,,可證,結(jié)合已知可得平面,由直線與平面所成角的定義,得,根據(jù)直角三角形邊角關(guān)系及中位線定理,求出,可得,由已知條件可得平面,進而有,可證平面為所求距離;或求出三棱錐的體積和的面積,用等體積法,求點到平面的距離

解:(1)證明:如圖,取的中點,連接,

中,分別為,的中點,

.又∵中點,底面是矩形,

,∴,

∴四邊形為平行四邊形,∴.

又∵平面,平面,∴平面.

2)方法一:連接,取的中點,連接,.

中,

平面,∴平面,

與平面所成角為,∴,

,∴,

中,∵,,∴,

,

為等腰直角三角形,∴,

∵底面為矩形,∴,

平面,∴,又,

平面.

平面,∴

又∵,∴平面,

又∵,,

∴點到平面的距離為.

方法二:連接,取的中點,連接.

中,,

平面,∴平面

與平面所成角為,

.

,∴,在中,

,,

,,

為等腰直角三角形,∴,

∵底面為矩形,∴,

平面,∴,又,

平面,∴.

中,,

中,.

設(shè)點到平面的距離為,則

.

,∴,

∴點到平面的距離為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù),aR),以O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ2cosθ

1)求直線l的普通方程及曲線C的直角坐標(biāo)方程;

2)若直線l過點P1,1)且與曲線C交于AB兩點,求|PA|+|PB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,兩焦點與短軸的一個端點的連線構(gòu)成的三角形面積為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)與圓O相切的直線l交橢圓CAB兩點(O為坐標(biāo)原點),求△AOB面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為2的正方體中,點是對角線上的點(點不重合),則下列結(jié)論正確的個數(shù)為(

①存在點,使得平面平面;

②存在點,使得平面;

③若的面積為,則

④若、分別是在平面與平面的正投影的面積,則存在點,使得.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在斜三棱柱中,,側(cè)面是邊長為4的菱形,,、分別為、的中點.

1)求證:平面;

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為的橢圓的左頂點為A,且橢圓E經(jīng)過與坐標(biāo)軸不垂直的直線l與橢圓E交于CD兩點,且直線AC和直線AD的斜率之積為.

I)求橢圓E的標(biāo)準(zhǔn)方程;

)求證:直線l過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在點處的切線為,若函數(shù)滿足(其中為函數(shù)的定義域,當(dāng)時,恒成立,則稱為函數(shù)的“轉(zhuǎn)折點”,已知函數(shù)在區(qū)間上存在一個“轉(zhuǎn)折點”,則的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某餅屋進行為期天的五周年店慶活動,現(xiàn)策劃兩項有獎促銷活動,活動一:店慶期間每位顧客一次性消費滿元,可得元代金券一張;活動二:活動期間每位顧客每天有一次機會獲得一個一元或兩元紅包.根據(jù)前一年該店的銷售情況,統(tǒng)計了位顧客一次性消費的金額數(shù)(元),頻數(shù)分布表如下圖所示:

一次性消費金額數(shù)

人數(shù)

以這位顧客一次消費金額數(shù)的頻率分布代替每位顧客一次消費金額數(shù)的概率分布.

1)預(yù)計該店每天的客流量為人次,求這次店慶期間,商家每天送出代金券金額數(shù)的期望;

2)假設(shè)顧客獲得一元或兩元紅包的可能性相等,商家在店慶活動結(jié)束后會公布幸運數(shù)字,連續(xù)天參加返紅包的顧客,如果紅包金額總數(shù)與幸運數(shù)字一致,則可再獲得元的店慶幸運紅包一個.若公布的幸運數(shù)字是,求店慶期間一位連續(xù)天消費的顧客獲得紅包金額總數(shù)的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界軍人運動會,簡稱軍運會,是國際軍事體育理事會主辦的全球軍人最高規(guī)格的大型綜合性運動會,每四年舉辦一屆,會期710天,比賽設(shè)27個大項,參賽規(guī)模約100多個國家8000余人,規(guī)模僅次于奧運會,是和平時期各國軍隊展示實力形象、增進友好交流、擴大國際影響的重要平臺,被譽為軍人奧運會”.根據(jù)各方達成的共識,軍運會于20191018日至27日在武漢舉行,賽期10天,共設(shè)置射擊、游泳、田徑、籃球等27個大項、329個小項.其中,空軍五項、軍事五項、海軍五項、定向越野和跳傘5個項目為軍事特色項目,其他項目為奧運項目.現(xiàn)對某國在射擊比賽預(yù)賽中的得分數(shù)據(jù)進行分析,得到如下的頻率分布直方圖:

1)估計某國射擊比賽預(yù)賽成績得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)根據(jù)大量的射擊成績測試數(shù)據(jù),可以認為射擊成績近似地服從正態(tài)分布,經(jīng)計算第(1)問中樣本標(biāo)準(zhǔn)差的近似值為50,用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計值,求射擊成績得分恰在350400的概率;[參考數(shù)據(jù):若隨機變量服從正態(tài)分布,則:,;

3)某汽車銷售公司在軍運會期間推廣一款新能源汽車,現(xiàn)面向意向客戶推出玩游戲,送大獎,活動,客戶可根據(jù)拋擲骰子的結(jié)果,操控微型遙控車在方格圖上行進,若遙控車最終停在勝利大本營,則可獲得購車優(yōu)惠券.已知骰子出現(xiàn)任意點數(shù)的概率都是,方格圖上標(biāo)有第0格,第1格,第2格,……50格.遙控車開始在第0格,客戶每拋擲一次骰子,遙控車向前移動一次,若拋擲出正面向上的點數(shù)是1,2,3,4,5點,遙控車向前移動一格(從),若拋擲出正面向上的點數(shù)是6點,遙控車向前移動兩格(從),直到遙控車移動到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結(jié)束.設(shè)遙控車移動到第格的概率為,試證明是等比數(shù)列,并求,以及根據(jù)的值解釋這種游戲方案對意向客戶是否具有吸引力.

查看答案和解析>>

同步練習(xí)冊答案