如圖.在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點(diǎn),點(diǎn)E在棱BB1上運(yùn)動(dòng).
(1)證明:AD⊥C1E;
(2)當(dāng)異面直線AC,C1E 所成的角為60°時(shí),求三棱錐C1-A1B1E的體積.
【答案】分析:(1)根據(jù)直三棱柱的性質(zhì),得AD⊥BB1,等腰△ABC中利用“三線合一”證出AD⊥BC,結(jié)合線面垂直判定定理,得AD⊥平面BB1C1C,從而可得AD⊥C1E;
(2)根據(jù)AC∥A1C1,得到∠EC1A1(或其補(bǔ)角)即為異面直線AC、C1E 所成的角.由A1C1⊥A1B1且A1C1⊥AA1,證出A1C1⊥平面AA1B1B,從而在Rt△A1C1E中得到∠EC1A1=60°,利用余弦的定義算出C1E=2A1C1=2,進(jìn)而得到△A1B1E面積為,由此結(jié)合錐體體積公式即可算出三棱錐C1-A1B1E的體積.
解答:解:(1)∵直棱柱ABC-A1B1C1中,BB1⊥平面ABC,AD?平面ABC,∴AD⊥BB1
∵△ABC中,AB=AC,D為BC中點(diǎn),∴AD⊥BC
又∵BC、BB1?平面BB1C1C,BC∩BB1=B
∴AD⊥平面BB1C1C,結(jié)合C1E?平面BB1C1C,可得AD⊥C1E;
(2)∵直棱柱ABC-A1B1C1中,AC∥A1C1,
∴∠EC1A1(或其補(bǔ)角)即為異面直線AC、C1E 所成的角
∵∠BAC=∠B1A1C1=90°,∴A1C1⊥A1B1,
又∵AA1⊥平面A1B1C1,可得A1C1⊥AA1,
∴結(jié)合A1B1∩AA1=A1,可得A1C1⊥平面AA1B1B,
∵A1E?平面AA1B1B,∴A1C1⊥A1E
因此,Rt△A1C1E中,∠EC1A1=60°,可得cos∠EC1A1==,得C1E=2A1C1=2
又∵B1C1==2,∴B1E==2
由此可得V=S×A1C1=×=
點(diǎn)評:本題給出直三棱柱的底面是等腰直角三角形,在已知側(cè)棱長和底面邊長的情況下證明線線垂直并求錐體的體積,著重考查了直棱柱的性質(zhì)、空間線面垂直的判定與性質(zhì)等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=90°,AA1=2
3
,E,F(xiàn)分別為AB、CB中點(diǎn),過直線EF作棱柱的截面,若截面與平面ABC所成的二面角的大小為60°,則截面的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直棱柱ABC-A1B1C1中,AC=BC=4
3
,∠ACB=90°,AA1=2,E、F分別是AC、AB的中點(diǎn),過直線EF作棱柱的截面,若截面與平面ABC所成的二面角的大小為60°,則截面的面積為
20
3
28
3
(對一個(gè)給2分)
20
3
28
3
(對一個(gè)給2分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河西區(qū)一模)如圖,在直棱柱ABC-A1B1C1中AB⊥BC,AB=BD=CC1=2,D為AC的中點(diǎn).
(I)證明AB1∥平面BDC1;
(Ⅱ)證明A1C⊥平面BDC1
(Ⅲ)求二面角A-BC1-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•臨沂一模)如圖,在直棱柱ABC-A1B1C1中,AC=BC=
12
AA1,∠ACB=90°,G為BB1的中點(diǎn).
(Ⅰ)求證:平面A1CG⊥平面A1GC1;
(Ⅱ)求平面ABC與平面A1GC所成銳二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南)如圖.在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=
2
,AA1=3,D是BC的中點(diǎn),點(diǎn)E在棱BB1上運(yùn)動(dòng).
(1)證明:AD⊥C1E;
(2)當(dāng)異面直線AC,C1E 所成的角為60°時(shí),求三棱錐C1-A1B1E的體積.

查看答案和解析>>

同步練習(xí)冊答案