【題目】某保險公司有一款保險產(chǎn)品的歷史戶獲益率(獲益率=獲益÷保費收入的頻率分布直方圖如圖所示:

)試估計平均收益率;

)根據(jù)經(jīng)驗若每份保單的保費在元的基礎(chǔ)上每增加元,對應(yīng)的銷量(萬份)與(元)有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下的對應(yīng)數(shù)據(jù):

(元)

銷量(萬份)

根據(jù)數(shù)據(jù)計算出銷量(萬份)與(元)的回歸方程為;

)若把回歸方程當作的線性關(guān)系,用()中求出的平均獲益率估計此產(chǎn)品的獲益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大獲益,并求出該最大獲益.

參考公示:

【答案】(I);(II)(。,(ⅱ).

【解析】試題分析:(1)利用頻率分布直方圖計算出平均收益率;2利用公式計算出 ,從而得到回歸直線方程;進一步算出最大獲益即可.

試題解析:

(Ⅰ)區(qū)間中值依次為:0.05,0.15,0.25,0.35,0.45,0.55,

取值概率依次為:0.1,0.2,0.25,0.3,0.1,0.05,

平均獲益率為

(Ⅱ)(i)

.

(ii)設(shè)每份保單的保費為元,則銷量為,則保費獲益為

萬元,

元時,保費收入最大為萬元,保險公司預(yù)計獲益為萬元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了對新研發(fā)的一批產(chǎn)品進行合理定價,將產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:

已知

(1)求的值

(2)已知變量具有線性相關(guān)性,求產(chǎn)品銷量關(guān)于試銷單價的線性回歸方程 可供選擇的數(shù)據(jù)

(3)用表示(2)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值。當銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”。試求這6組銷售數(shù)據(jù)中的 “好數(shù)據(jù)”。

參考數(shù)據(jù):線性回歸方程中的最小二乘估計分別是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

非體育迷

體育迷

合計

10

55

合計

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認為“體育迷”與性別有關(guān)?

(2)現(xiàn)在從該地區(qū)非體育迷的電視觀眾中,采用分層抽樣方法選取5名觀眾,求從這5名觀眾選取兩人進行訪談,被抽取的2名觀眾中至少有一名女生的概率.

附:

PK2k

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列中, ,且.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車的推廣給消費者帶來全新消費體驗,迅速贏得廣大消費者的青睞,然而,同時也暴露出管理、停放、服務(wù)等方面的問題,為了了解公眾對共享單車的態(tài)度(提倡或不提倡),某調(diào)查小組隨機地對不同年齡段50人進行調(diào)查,將調(diào)查情況整理如下表:

并且,年齡在的人中持“提倡”態(tài)度的人數(shù)分別為5和3,現(xiàn)從這兩個年齡段中隨機抽取2人征求意見.

(Ⅰ)求年齡在中被抽到的2人都持“提倡”態(tài)度的概率;

(Ⅱ)求年齡在中被抽到的2人至少1人持“提倡”態(tài)度的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓軸負半軸相交于點,與軸正半軸相交于點.

1)若過點的直線被圓截得的弦長為,求直線的方程;

2)若在以為圓心半徑為的圓上存在點,使得 (為坐標原點),求的取值范圍;

3)設(shè)是圓上的兩個動點,點關(guān)于原點的對稱點為,點關(guān)于軸的對稱點為,如果直線軸分別交于,問是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的滿足,前項的和為,且.

(1)求的值;

(2)設(shè),證明:數(shù)列是等差數(shù)列;

(3)設(shè),若,求對所有的正整數(shù)都有成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知長方形中,,,M為DC的中點.沿折起,使得平面平面.

1求證:

2若點是線段上的一動點,問點在何位置時,二面角的余弦值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面為梯形,,,且

若點上一點且,證明:平面

二面角的大。

在線段上是否存在一點,使得?若存在,求出的長;若不存在,說明理由

查看答案和解析>>

同步練習冊答案