設(shè)y1=a3x+1,y2=a-2x(a>0,a≠1),確定x為何值時,有:
(1)y1=y2 ;(2)y1>y2

解:(1)因為y1=y2
∴3x-1=-2x
解得:(1)
(2)因為a>1,所以指數(shù)函數(shù)為增函數(shù).
又因為y1>y2,所以有3x-1>-2x
解得;
若0<a<1,指數(shù)函數(shù)為減函數(shù).
因為y1>y2,
所以有3x-1<-2x
解得
綜上:
分析:先將兩個函數(shù)抽象為指數(shù)函數(shù):y=ax,則
(1)轉(zhuǎn)化為關(guān)于x的方程:3x-1=-2x求解.
(2)0<a<1,y=ax是減函數(shù),有3x-1<-2x求解,當a>1時,y=ax是增函數(shù),有3x-1>-2x求解,然后兩種情況取并集.
點評:本題主要考查指數(shù)不等式的解法,這類問題要轉(zhuǎn)化為指數(shù)函數(shù)的單調(diào)性來解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

17、設(shè)y1=a3x+5,y2=a-2x,(其中a>0且a≠1).
(1)當y1=y2時,求x的值;   
(2)當y1>y2時,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y1=a3x+1,y2=a-2x(a>0,a≠1),確定x為何值時,有:
(1)y1=y2
(2)y1>y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y1=a3x+1,y2=a-2x,其中a>0,a≠1.確定x為何值時,有

(1)y1=y2;(2)y1>y2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年云南省昆明市師范大學(xué)五華區(qū)實驗中學(xué)高一(上)期中數(shù)學(xué)練習(xí)試卷(解析版) 題型:解答題

設(shè)y1=a3x+1,y2=a-2x(a>0,a≠1),確定x為何值時,有:
(1)y1=y2 ;
(2)y1>y2

查看答案和解析>>

同步練習(xí)冊答案