2.(Ⅰ)已知集合A={(x,y)|y=x2+2},B={(x,y)|y=6-x2},求A∩B;
(Ⅱ)已知集合A={y|y=x2+2},B={y|y=6-x2},求A∩B.

分析 (Ⅰ)聯(lián)立A與B中兩函數(shù)解析式,求出解即可確定出兩集合的交集;
(Ⅱ)求出A與B中y的范圍確定出A與B,找出兩集合的交集即可.

解答 解:(Ⅰ)聯(lián)立得:$\left\{\begin{array}{l}{y={x}^{2}+2}\\{y=6-{x}^{2}}\end{array}\right.$,
消去y得:x2+2=6-x2,
解得:x=±$\sqrt{2}$,
把x=$\sqrt{2}$代入得:y=4;把x=-$\sqrt{2}$代入得:y=4,
則A∩B={($\sqrt{2}$,4),(-$\sqrt{2}$,4)};
(Ⅱ)由y=x2+2≥2,得到A={y|y≥2},
由y=6-x2≤6,得到B={y|y≤6},
則A∩B={y|2≤x≤6}.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.將f(x)=2sin2x的圖象向右平移$\frac{π}{6}$個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)在區(qū)間(a,b)上含有20個(gè)零點(diǎn),則b-a的最大值為( 。
A.10πB.$\frac{31}{3}$πC.$\frac{32}{3}$πD.11π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a,b∈R,比較a2+b2與ab+a+b-1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖所示的莖葉圖表示甲、乙兩人在5次綜合測評中的成績,其中一個(gè)數(shù)字被污損,則甲的平均成績不低于乙的平均成績的概率為$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.Sn為數(shù)列的前n項(xiàng)和,已知an>0,an2+2an=4Sn-1.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬元)之間有如表對應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)畫出散點(diǎn)圖;
(2)求線性回歸方程;
(3)預(yù)測當(dāng)廣告費(fèi)支出7(百萬元)時(shí)的銷售額.
參考公式:用最小二乘法求線性回歸方程,其中系數(shù)$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.判斷函數(shù)f(x)=$\frac{ax}{{{x^2}-1}}$(a≠0)在區(qū)間(-1,1)上的奇偶性和單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)l是一條直線,α,β,γ是不同的平面,則在下列命題中,假命題是④.
①如果α⊥β,那么α內(nèi)一定存在直線平行于β
②如果α不垂直于β,那么α內(nèi)一定不存在直線垂直于β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
④如果α⊥β,l與α,β都相交,那么l與α,β所成的角互余.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{a}$,$\overrightarrow b$,則“$\overrightarrow a$∥$\overrightarrow b$”是“|$\overrightarrow a$-$\overrightarrow b$|=|$\overrightarrow a$|-|$\overrightarrow b$|”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案