【題目】若函數(shù)為常數(shù),)的圖象關(guān)于直線對稱,則函數(shù)的圖象(  )

A. 關(guān)于直線對稱B. 關(guān)于直線對稱

C. 關(guān)于點(diǎn)對稱D. 關(guān)于點(diǎn)對稱

【答案】D

【解析】

利用三角函數(shù)的對稱性求得a的值,可得gx)的解析式,再代入選項(xiàng),利用正弦函數(shù)的圖象的對稱性,得出結(jié)論.

解:∵函數(shù)fx)=asinx+cosxa為常數(shù),xR)的圖象關(guān)于直線x對稱,

f0)=f),即,∴a,

所以函數(shù)gx)=sinx+acosxsinx+cosxsinx+),

當(dāng)x=﹣時(shí),gx)=-,不是最值,故gx)的圖象不關(guān)于直線x=﹣對稱,故A錯(cuò)誤,

當(dāng)x時(shí),gx)=1,不是最值,故gx)的圖象不關(guān)于直線x對稱,故B錯(cuò)誤,

當(dāng)x時(shí),gx)=0,故C錯(cuò)誤,

當(dāng)x時(shí),gx)=0,故D正確,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生對《中華人民共和國交通安全法》的了解情況,調(diào)查部門在該校進(jìn)行了一次問卷調(diào)查(共12道題),從該校學(xué)生中隨機(jī)抽取40人,統(tǒng)計(jì)了每人答對的題數(shù),將統(tǒng)計(jì)結(jié)果分成,,,,六組,得到如下頻率分布直方圖.

1)估計(jì)這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)若從答對題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人,求恰有1人答對題數(shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的內(nèi)角、的對邊分別為、,內(nèi)一點(diǎn),若分別滿足下列四個(gè)條件:

;

;

則點(diǎn)分別為的(

A.外心、內(nèi)心、垂心、重心B.內(nèi)心、外心、垂心、重心

C.垂心、內(nèi)心、重心、外心D.內(nèi)心、垂心、外心、重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn),是拋物線上不同兩點(diǎn),且(其中是坐標(biāo)原點(diǎn)),直線交于點(diǎn),線段的中點(diǎn)為.

(Ⅰ)求拋物線的準(zhǔn)線方程;

(Ⅱ)求證:直線軸平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解校園噪音情況,學(xué)校環(huán)保協(xié)會(huì)對校園噪音值(單位:分貝)進(jìn)行了天的監(jiān)測,得到如下統(tǒng)計(jì)表:

噪音值(單位:分貝)

頻數(shù)

(1)根據(jù)該統(tǒng)計(jì)表,求這天校園噪音值的樣本平均數(shù)(同一組的數(shù)據(jù)用該組組間的中點(diǎn)值作代表).

(2)根據(jù)國家聲環(huán)境質(zhì)量標(biāo)準(zhǔn):“環(huán)境噪音值超過分貝,視為重度噪音污染;環(huán)境噪音值不超過分貝,視為度噪音污染.”如果把由上述統(tǒng)計(jì)表算得的頻率視作概率,回答下列問題:

(i)求周一到周五的五天中恰有兩天校園出現(xiàn)重度噪音污染而其余三天都是輕度噪音污染的概率.

(ii)學(xué)校要舉行為期天的“漢字聽寫大賽”校園選拔賽,把這天校園出現(xiàn)的重度噪音污染天數(shù)記為,求的分布列和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)說法,其中正確的是( )

A.命題“若,則”的否命題是“若,則

B.”是“雙曲線的離心率大于”的充要條件

C.命題“,”的否定是“,

D.命題“在中,若,則是銳角三角形”的逆否命題是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,O的中點(diǎn).

1)證明:平面;

2)若,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)如圖,過定點(diǎn)的直線交橢圓兩點(diǎn),連接并延長交,求證:.

查看答案和解析>>

同步練習(xí)冊答案