精英家教網 > 高中數學 > 題目詳情
8.給出下列四個命題:
①命題“?x∈R,cosx>0”的否定“?x∈R,cosx≤0”
②a,b,c是空間中的三條直線,a∥b的充要條件是a⊥c且b⊥c
③命題“在△ABC中,若A>B,則sinA>sinB”;
④若“p∧q”是假命題,則p,q都是假命題;
其中的真命題是①③.(寫出所有真命題的編號)

分析 ①含有量詞的命題的否定,先換量詞,再否定結論; ②空間,同時垂直同一直線的兩直線不一定平行;
③在△ABC中,若A>B,則a>b,則2RsinA>2RsinB,則sinA>sinB;
④“p∧q”是假命題,則p,q有假命題;

解答 解:對于①含有量詞的命題的否定,先換量詞,再否定結論,故①是真命題;
對于②,空間,同時垂直同一直線的兩直線不一定平行,故②是假命題;
對于③,在△ABC中,若A>B,則a>b,則2RsinA>2RsinB,則sinA>sinB,故③是真命題;
④“p∧q”是假命題,則p,q有假命題,故④是假命題;
 故答案為:①③

點評 本題考查了命題簡易邏輯中命題的否定及真假判定,要求熟悉大量的基礎知識,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

18.曲線y=e2x在x=0處切線方程為y=2x+1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知圓C的方程為x2+y2=9
(1)求過點P(2,-$\sqrt{5}$)的圓的切線方程;
(2)求過點Q(3,5)的圓的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.設m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題正確的是③.
①若m⊥n,m⊥α,n∥β,則α∥β;   ②若m∥α,n∥β,α∥β,則m∥n;
③若m⊥α,n∥β,α∥β,則m⊥n;  ④若m∥n,m∥α,n∥β,則α∥β.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.求不等式的解集.
(1)32x-1>$(\frac{1}{3})^{x-2}$
(2)3+log2(x-1)<2log4(x+1)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.如圖所示是正方體的平面展開圖,在這個正方體中( 。
①BM與ED平行     
②CN與BE是異面直線;
③CN與BM成60°角; 
④DM與BN垂直.
A.①②③B.②④C.③④D.②③④

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知a=2${\;}^{\frac{1}{3}}$,b=log2$\frac{1}{3}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,則( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,以M(1,0)為圓心,橢圓的短半軸長為半徑的圓與直線x-y+$\sqrt{2}$-1=0相切.
(1)求橢圓C的標準方程;
(2)已知點N(3,2),和平面內一點P(m,n)(m≠3),過點M任作直線l與橢圓C相交于A,B兩點,設直線AN,NP,BN的斜率分別為k1,k2,k3,k1+k3=3k2,試求m,n滿足的關系式.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知f(x)是定義在R上的奇函數,且滿足f(x+4)=f(x),當x∈(2,4)時,f(x)=|x-3|,則f(1)+f(2)+f(3)+f(4)=( 。
A.1B.0C.2D.-2

查看答案和解析>>

同步練習冊答案