17.已知函數(shù)f(x)=$\frac{cosx}{{e}^{x}}$,則函數(shù)f(x)的圖象在點(diǎn)(0,f(0))處的切線方程為( 。
A.x+y+1=0B.x+y-1=0C.x-y+1=0D.x-y-1=0

分析 先求函數(shù)的導(dǎo)函數(shù)f′(x),再求所求切線的斜率即f′(0),由于切點(diǎn)為(0,1),故由點(diǎn)斜式即可得所求切線的方程.

解答 解:∵f(x)=$\frac{cosx}{{e}^{x}}$,
∴f′(x)=$\frac{-sinx-cosx}{{e}^{x}}$,
∴f′(0)=-1,f(0)=1,
即函數(shù)f(x)圖象在點(diǎn)(0,1)處的切線斜率為-1,
∴圖象在點(diǎn)(0,f(0))處的切線方程為y=-x+1,
即x+y-1=0.
故選:B.

點(diǎn)評 本題考查了基本函數(shù)導(dǎo)數(shù)公式,導(dǎo)數(shù)的四則運(yùn)算,導(dǎo)數(shù)的幾何意義,求已知切點(diǎn)的切線方程的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義:若橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),則其特征折線為$\frac{|x|}{a}$+$\frac{|y|}$=1(a>b>0).設(shè)橢圓的兩個(gè)焦點(diǎn)為F1、F2,長軸長為10,點(diǎn)P在橢圓的特征折線上,則下列不等式成立的是(  )
A.|PF1|+|PF2|>10B.|PF1|+|PF2|<10C.|PF1|+|PF2|≥10D.|PF1|+|PF2|≤10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|-1<x<3},集合B={x|x2-ax+b<0,a,b∈R}.
(Ⅰ)若A=B,求a,b的值;
(Ⅱ)若b=3,且(A∩B)?B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)等比數(shù)列{an}中,前n項(xiàng)和為Sn,已知S3=8,S6=7,則a2=-$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖為一個(gè)求20個(gè)數(shù)的平均數(shù)的算法語句,在橫線上應(yīng)填充的是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)-1.
(1)求f(x)的最小正周期和增區(qū)間
(2)(6分)當(dāng)x∈[-$\frac{π}{6},\frac{π}{4}$]時(shí),求f(x)的最大值和最小值,并指出f(x)取得最值時(shí)對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x,y滿足約束條件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-1≤0\\ y≤2\end{array}\right.$,那么z=x2+y2的最小值為(  )
A.5B.4C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.用秦九韻算法計(jì)算多項(xiàng)式f(x)=5x5+4x4+3x3+2x2+x+1,當(dāng)x=5時(shí),乘法運(yùn)算的次數(shù)為5;加法運(yùn)算的次數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下面各組函數(shù)中是同一函數(shù)的是(  )
(1)$y=\sqrt{-2{x^3}}與y=x\sqrt{-2x}$
(2)$y={(\sqrt{x})^2}$與y=|x|
(3)$y=\sqrt{x+1}•\sqrt{x-1}與y=\sqrt{(x+1)(x-1)}$
(4)f(x)=x2-2x-1與g(t)=t2-2t-1.
A.(1)(3)(4)B.(1)(2)(3)C.(3)(4)D.(4)

查看答案和解析>>

同步練習(xí)冊答案