3.已知復數(shù)z滿足z(1+i)2=1-i,則復數(shù)z對應的點在( 。┥希
A.直線y=-$\frac{1}{2}$xB.直線y=$\frac{1}{2}$xC.直線y=-$\frac{1}{2}$D.直線x=-$\frac{1}{2}$

分析 化簡可得z=$\frac{1-i}{2(1+i)}$=-$\frac{1}{2}$i,從而確定答案.

解答 解:∵z(1+i)2=1-i,
∴z=$\frac{1-i}{2(1+i)}$=-$\frac{1}{2}$i,
故復數(shù)z對應的點為(0,-$\frac{1}{2}$),在直線y=-$\frac{1}{2}$上,
故選:C.

點評 本題考查了復數(shù)的運算及復數(shù)的幾何意義的應用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.設實數(shù)a<0,定義域為R的函數(shù)$f(x)=a{cos^2}x-bsinxcosx-\frac{a}{2}$的最大值是$\frac{1}{2}$,且$f(\frac{π}{3})=\frac{{\sqrt{3}}}{4}$,
(1)求a、b的值;
(2)求函數(shù)f(x)在$x∈[\frac{π}{4},\frac{3π}{4}]$上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設全集U=R,集合A={x|x>0},B={x|x<1},則集合(∁UA)∩B=(  )
A.(-∞,0)B.(-∞,0]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知等比數(shù)列{an}中,a1=1,且a2+a4=3(a3+1).
(1)求數(shù)列{an}的通項公式;
(2)設bn=log3a2+log3a3+log3a4+…+log3an+1,求數(shù)列{$\frac{1}{_{n}}$}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若m為實數(shù)且(2+mi)(m-2i)=-4-3i,則m=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設$\frac{2}{3}$<a<1,函數(shù)f(x)=x3-$\frac{3}{2}$ax2+b在區(qū)間[-1,1]上的最大值為1,最小值為-$\frac{\sqrt{6}}{2}$,求f(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(-3,1)則下列結(jié)論正確的是(  )
A.$\overrightarrow{a}$⊥$\overrightarrow$B.$\overrightarrow{a}$∥$\overrightarrow$C.$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow$)D.$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x2+…+anxn,且a0+a1+a2+…+an=126,那么${({\sqrt{x}-\frac{1}{{\sqrt{x}}}})^n}$的展開式中的常數(shù)項為(  )
A.-15B.15C.20D.-20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知正方體ABCD-A′B′C′D′,求直線AC′與直線A′D′所成角的余弦值.

查看答案和解析>>

同步練習冊答案