(本小題滿分12分)
在如圖所示的四棱錐
中,已知
PA⊥平面
ABCD,
,
,
,
為
的中點(diǎn).
(1)求證:
MC∥平面
PAD;
(2)求直線
MC與平面
PAC所成角的余弦值;
(3)求二面角
的平面角的正切值.
(1)根據(jù)中位線性質(zhì),得到
EM//AB,且
EM= AB. 又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003835319590.png" style="vertical-align:middle;" />,且
,所以
EM//DC,且
EM=
DC ∴四邊形
DCME為平行四邊形, 則
MC∥
DE,
(2)
(3)
試題分析:(1 )如圖,取
PA的中點(diǎn)
E,連接
ME,
DE,∵
M為
PB的中點(diǎn),
∴
EM//AB,且
EM= AB. 又∵
,且
,
∴
EM//DC,且
EM=
DC ∴四邊形
DCME為平行四邊形,
則
MC∥
DE,又
平面
PAD, 平面
PAD所以
MC∥平面
PAD(2)取PC中點(diǎn)N,則
MN∥
BC,∵
PA⊥平面
ABCD,∴
PA⊥BC ,
又
,∴
BC⊥平面
PAC,
則
MN⊥平面
PAC所以,
為直線
MC與平面
PAC所成角,
(3)取
AB的中點(diǎn)
H,連接
CH,則由題意得
又
PA⊥平面
ABCD,所以
,則
平面
PAB.所以
,過
H作
于G,連接
CG,則
平面CGH,所以
則
為二面角
的平面角.
則
,
故二面角
的平面角的正切值為
點(diǎn)評:解決該試題的關(guān)鍵是能利用線面角和二面角的定義,準(zhǔn)確的表示角,借助于三角形的知識來求解得到,也可以建立空間直角坐標(biāo)系來運(yùn)用空間向量法來得到求解,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知一顆粒子等可能地落入如圖所示的四邊形ABCD內(nèi)的任意位置,如果通過大量的實(shí)驗(yàn)發(fā)現(xiàn)粒子落入△BCD內(nèi)的頻率穩(wěn)定在
附近,那么點(diǎn)A和點(diǎn)C到直線BD的距離之比約為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在如圖的直三棱柱
中,
,點(diǎn)
是
的中點(diǎn).
(1)求證:
∥平面
;
(2)求異面直線
與
所成的角的余弦值;
(3)求直線
與平面
所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題15分)如圖,在四棱錐
中,
底面
,
,
,
,
,
是
的中點(diǎn)。
(Ⅰ)證明:
;
(Ⅱ)證明:
平面
;
(Ⅲ)求二面角
的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如果一條直線
和平面
內(nèi)的一條直線平行,那么直線
和平面
的關(guān)系是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分10分)
如圖,已知三棱錐
O-
ABC的側(cè)棱
OA,
OB,
OC兩兩垂直,且
OA=2,
OB=3,
OC=4,
E是
OC的中點(diǎn).
(1)求異面直線
BE與
AC所成角的余弦值;
(2)求二面角
A-
BE-
C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖所示的三棱錐A-BCD中,∠BAD=90°,AD⊥BC,AD=4,AB=AC=2
,∠BAC=120°,若點(diǎn)P為△ABC內(nèi)的動點(diǎn)滿足直線DP與平面ABC所成角的正切值為2,則點(diǎn)P在△ABC內(nèi)所成的軌跡的長度為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)
為兩兩不重合的平面,
為兩兩不重合的直線,給出下列四個命題:
①若
,
,則
;
②若
,
,則
;
③若
,
,
,
,則
;
④若
,
,
,
,則
。
其中命題正確的是
.(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在三棱錐
中,
底面
,點(diǎn)
,
分別在棱
上,且
(Ⅰ)求證:
平面
;
(Ⅱ)當(dāng)
為
的中點(diǎn)時,求
與平面
所成的角的正弦值;
(Ⅲ)是否存在點(diǎn)
使得二面角
為直二面角?若存在,請確定點(diǎn)E的位置;若不存在,請說明理由.
查看答案和解析>>